MultiModem® & SocketModem®

MT9234 Series

AT Commands

Reference Guide
AT Commands Reference Guide for the MultiModem and SocketModem MT9234 Series
MT9234SMI, MT9234ZBA, MT9234ZBA-USB, MT9234MU, MT9234ZPX-UPCI, MT9234ZPX-PCIE
ISI9234PCIE
PN S000434, Version J

Copyright
This publication may not be reproduced, in whole or in part, without prior expressed written permission from Multi-Tech Systems, Inc. All rights reserved.
Copyright © 2007-2010, by Multi-Tech Systems, Inc.
Multi-Tech Systems, Inc. makes no representations or warranty with respect to the contents hereof and specifically disclaim any implied warranties of merchantability or fitness for any particular purpose. Furthermore, Multi-Tech Systems, Inc. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Multi-Tech Systems, Inc. to notify any person or organization of such revisions or changes.

Trademarks
Multi-Tech registered trademarks include the Multi-Tech logo, MultiModem, and SocketModem.

Technical Support
Please refer to the Copyright/Technical Support page in the product User Guide or Developer Guide.

World Headquarters
Multi-Tech Systems, Inc.
2205 Woodale Drive
Mounds View, MN 55112
Phone: 763-785-3500 or 800-328-9717
Fax: 763-785-9874
Internet Address: http://www.multitech.com
Contents

Chapter 1 – AT Commands, S-Registers, and Result Codes ... 6
Introduction ... 6
A Note About Fax Commands .. 6
Data and General Commands ... 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Attention Code</td>
<td>7</td>
</tr>
<tr>
<td>ENTER</td>
<td>ENTER Key</td>
<td>7</td>
</tr>
<tr>
<td>+++AT</td>
<td>Escape Sequence</td>
<td>7</td>
</tr>
<tr>
<td>A/</td>
<td>Repeat Last Command</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>Answer</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>Communication Standard Setting</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>Dial</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>Echo Command</td>
<td>9</td>
</tr>
<tr>
<td>F</td>
<td>Online Data Character Echo Command</td>
<td>9</td>
</tr>
<tr>
<td>H</td>
<td>Hook Control</td>
<td>9</td>
</tr>
<tr>
<td>I</td>
<td>Request ID Information</td>
<td>10</td>
</tr>
<tr>
<td>M</td>
<td>Monitor Speaker Mode</td>
<td>10</td>
</tr>
<tr>
<td>N</td>
<td>Modulation Handshake</td>
<td>11</td>
</tr>
<tr>
<td>O</td>
<td>Return Online to Data Mode</td>
<td>11</td>
</tr>
<tr>
<td>P</td>
<td>Set Pulse or Tone Dialing Default</td>
<td>11</td>
</tr>
<tr>
<td>Q</td>
<td>Result Codes Enable/Disable</td>
<td>11</td>
</tr>
<tr>
<td>Sr</td>
<td>S-Register Control</td>
<td>12</td>
</tr>
<tr>
<td>T</td>
<td>Select Tone Dialing</td>
<td>12</td>
</tr>
<tr>
<td>V</td>
<td>Result Code Format</td>
<td>12</td>
</tr>
<tr>
<td>W</td>
<td>Result Code Options</td>
<td>12</td>
</tr>
<tr>
<td>X</td>
<td>Select Result Code and Monitor Call Progress</td>
<td>13</td>
</tr>
<tr>
<td>Z</td>
<td>Reset and Recall Stored Profile</td>
<td>13</td>
</tr>
<tr>
<td>&C</td>
<td>Data Carrier Detect (DCD) Control</td>
<td>14</td>
</tr>
<tr>
<td>&D</td>
<td>Data Terminal Ready (DTR) Control</td>
<td>14</td>
</tr>
<tr>
<td>&E</td>
<td>XON/XOFF Pacing Control</td>
<td>14</td>
</tr>
<tr>
<td>&F</td>
<td>Restore Factory Default Configuration</td>
<td>14</td>
</tr>
<tr>
<td>&G</td>
<td>V.22bis Guard Tone Control</td>
<td>15</td>
</tr>
<tr>
<td>&K</td>
<td>Local Flow Control Selection</td>
<td>15</td>
</tr>
<tr>
<td>&L</td>
<td>Leased Line Operation</td>
<td>15</td>
</tr>
<tr>
<td>&P</td>
<td>Pulse Dial Make-to-Break Ratio Selection</td>
<td>15</td>
</tr>
<tr>
<td>&Q</td>
<td>Asynchronous Communications Mode</td>
<td>16</td>
</tr>
<tr>
<td>&S</td>
<td>Data Set Ready (DSR)</td>
<td>16</td>
</tr>
<tr>
<td>&T</td>
<td>Self-Test Commands</td>
<td>16</td>
</tr>
<tr>
<td>&V</td>
<td>View Active Configuration</td>
<td>16</td>
</tr>
<tr>
<td>&W</td>
<td>Store Current Configuration</td>
<td>17</td>
</tr>
<tr>
<td>&Z</td>
<td>Store Dialing Location and Number</td>
<td>17</td>
</tr>
<tr>
<td>\A</td>
<td>Select Maximum MNP Block Size</td>
<td>17</td>
</tr>
<tr>
<td>\B</td>
<td>Transmit Break</td>
<td>18</td>
</tr>
<tr>
<td>\K</td>
<td>Break Control</td>
<td>18</td>
</tr>
<tr>
<td>\N</td>
<td>Error Correction Mode</td>
<td>19</td>
</tr>
<tr>
<td>\Q</td>
<td>Local Flow Control Selection</td>
<td>19</td>
</tr>
<tr>
<td>\T</td>
<td>Inactivity Timer</td>
<td>19</td>
</tr>
<tr>
<td>\V</td>
<td>Protocol Result Code</td>
<td>19</td>
</tr>
<tr>
<td>\X</td>
<td>XON/XOFF Pass-Through</td>
<td>20</td>
</tr>
<tr>
<td>-C</td>
<td>Data Calling Tone</td>
<td>20</td>
</tr>
<tr>
<td>%A</td>
<td>Adaptive Answer Result Code Enable</td>
<td>20</td>
</tr>
<tr>
<td>%B</td>
<td>View Numbers in Blacklist</td>
<td>20</td>
</tr>
<tr>
<td>%C</td>
<td>Data Compression Control</td>
<td>21</td>
</tr>
<tr>
<td>%DC</td>
<td>AT Command Control</td>
<td>21</td>
</tr>
<tr>
<td>%DT</td>
<td>Set AT Command Mode Timer</td>
<td>21</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>%E</td>
<td>Fallback and Fall Forward Control</td>
<td>21</td>
</tr>
<tr>
<td>%H</td>
<td>Set Callback Security – Direct Connect Enable</td>
<td>21</td>
</tr>
<tr>
<td>%S</td>
<td>Command Speed Response</td>
<td>22</td>
</tr>
<tr>
<td>+ABE</td>
<td>V.8 and V.8bis Operation Controls</td>
<td>22</td>
</tr>
<tr>
<td>+DCS</td>
<td>Select V.42bis or V.44 Data Compression</td>
<td>23</td>
</tr>
<tr>
<td>+DR</td>
<td>V.44 Data Compression Reporting</td>
<td>24</td>
</tr>
<tr>
<td>+DS</td>
<td>V.42bis Data Compression</td>
<td>24</td>
</tr>
<tr>
<td>+DS44</td>
<td>V.44 Data Compression</td>
<td>25</td>
</tr>
<tr>
<td>+EB</td>
<td>Break Handling in Error Control Operation</td>
<td>26</td>
</tr>
<tr>
<td>+EFCS</td>
<td>32-bit Frame Check Sequence</td>
<td>26</td>
</tr>
<tr>
<td>+ER</td>
<td>Error Control Report</td>
<td>26</td>
</tr>
<tr>
<td>+ES</td>
<td>Error Control Selection</td>
<td>27</td>
</tr>
<tr>
<td>+ETBM</td>
<td>Call Termination Buffer Management</td>
<td>27</td>
</tr>
<tr>
<td>+FCLASS</td>
<td>Fax Class Indication</td>
<td>28</td>
</tr>
<tr>
<td>+GCLASS</td>
<td>Complete List of Capabilities Request</td>
<td>28</td>
</tr>
<tr>
<td>+GCi=</td>
<td>Country of Installation</td>
<td>28</td>
</tr>
<tr>
<td>+GMI</td>
<td>Manufacturer Identification Request</td>
<td>28</td>
</tr>
<tr>
<td>+GMM</td>
<td>Model Identification Request</td>
<td>28</td>
</tr>
<tr>
<td>+GMR</td>
<td>Revision Request</td>
<td>28</td>
</tr>
<tr>
<td>+IFC</td>
<td>DTE-DCE Local Flow Control</td>
<td>29</td>
</tr>
<tr>
<td>+ILRR</td>
<td>DTE-DCE Local Rate Reporting</td>
<td>29</td>
</tr>
<tr>
<td>+IPR</td>
<td>Fixed DTE Rate</td>
<td>29</td>
</tr>
<tr>
<td>+MR</td>
<td>Modulation Reporting Control</td>
<td>30</td>
</tr>
<tr>
<td>+MS</td>
<td>Modulation Selection</td>
<td>30</td>
</tr>
<tr>
<td>$D</td>
<td>DTR Dialing</td>
<td>32</td>
</tr>
<tr>
<td>$EB</td>
<td>Asynchronous Word Length</td>
<td>32</td>
</tr>
<tr>
<td>$FC</td>
<td>Quick Connect</td>
<td>32</td>
</tr>
<tr>
<td>$LB</td>
<td>Long Break</td>
<td>32</td>
</tr>
<tr>
<td>$LL</td>
<td>Implements V.34 Handshake</td>
<td>32</td>
</tr>
<tr>
<td>$MB</td>
<td>Online BPS Speed</td>
<td>33</td>
</tr>
<tr>
<td>$RP</td>
<td>Ring Priority vs. AT Command Priority</td>
<td>33</td>
</tr>
<tr>
<td>$SB</td>
<td>Serial Port Baud Rate</td>
<td>33</td>
</tr>
<tr>
<td>+VDR</td>
<td>Distinctive Ring Report</td>
<td>34</td>
</tr>
<tr>
<td>#P</td>
<td>Set 11-bit Parity</td>
<td>34</td>
</tr>
<tr>
<td>#S</td>
<td>Enter Setup Password</td>
<td>34</td>
</tr>
<tr>
<td>#S=</td>
<td>Store Setup Password</td>
<td>34</td>
</tr>
<tr>
<td>%%%%ATMTSMODEM</td>
<td>Remote Configuration Escape Sequence</td>
<td>35</td>
</tr>
<tr>
<td>+VCID</td>
<td>Caller ID Selection</td>
<td>35</td>
</tr>
</tbody>
</table>

Callback Security Commands	36
#CBA	Callback Attempts
#CBD	Callback Delay
#CBF?	Callback Failed Attempts Display
#CBFR	Callback Failed Attempts Reset
#CBI	Local Callback Inactivity Timer
#CBN	Store Callback Password
#CBP	Callback Parity
#CBR	Callback Security Reset
#CBS	Callback Enable/Disable

S-Registers	38

Result Codes	41

Chapter 4 – Voice Commands	43

Introduction | 43

Voice S-Register Summary | 44

Voice Commands | 44

Commands That Change for Voice Mode Support | 44

Voice +V Commands Detail | 45
+FCLASS=8 Select Voice Mode ... 45
+VNH自动挂机控制 ... 45
+VIP 初始化语音参数 ... 45
+VRX 进入接收语音状态 ... 45
+VTS 发送语音音调(s) ... 46
+VTX 开始语音传送过程 ... 47
+VGR 语音接收音量 ... 47
+VGT 设置传送语音音量 ... 47
+VIP 初始化语音参数 ... 48
+VRX 进入接收语音状态 ... 48
+VLS 选择模拟源/目标 ... 49
+VRA 环回消失计时器 ... 50
+VRN 环回计时器 ... 50
+VSD 沉默检测灵敏度 ... 51
+VSM 选择语音压缩方法 ... 52
+VTD 铃声音调持续时间 (DTMF/音调生成持续时间) ... 53
+VDR 区分性铃声 (音调生成持续时间) ... 53
+VEM 事件报告和屏蔽 ... 54

Interface Configuration Commands ... 55
+VPP 启用或禁用语音模式包协议 ... 55
+VPR 选择 DTE/DCE 接口速率 (关闭自动速率) ... 55

Flow Control ... 56

Voice Mode Result Codes ... 56

Unsolicited Voice Mode Result Codes ... 57
 Valid Complex Event Report Tags ... 57

Voice Mode Shielded Codes ... 58

DTE/DCE Interface Rates ... 60

Chapter 5 – Country/Regional Code Configuration ... 61

Index ... 62
Chapter 1 – AT Commands, S-Registers, and Result Codes

Introduction

The AT commands are used to control the operation of your modem. They are called AT commands because the characters AT must precede each command to get the ATtention of the modem.

AT commands can be issued only when the modem is in command mode or online command mode.

- The modem is in command mode whenever it is not connected to another modem.
- The modem is in data mode whenever it is connected to another modem and ready to exchange data. Online command mode is a temporary state in which you can issue commands to the modem while connected to another modem.
- To put the modem into online command mode from data mode, you must issue an escape sequence (+++AT) and the command, e.g., +++ATH to hang up the modem. To return to data mode from online command mode, you must issue the command ATO.

To send AT commands to the modem you must use a communications program, such as the HyperTerminal applet in Windows or some other available terminal program. You can issue commands to the modem either directly, by typing them in the terminal window of the communications program, or indirectly, by configuring the operating system or communications program to send the commands automatically. Fortunately, communications programs make daily operation of modems effortless by hiding the commands from the user. Most users, therefore, need to use AT commands only when reconfiguring the modem; e.g., to turn auto answer on or off.

The format for entering an AT command is ATXn, where X is the command and n is the specific value for the command, sometimes called the command parameter. The value is always a number. If the value is zero, you can omit it from the command; thus, AT&W is equivalent to AT&W0. Most commands have a default value, which is the value that is set at the factory. The default values are shown in the “AT Command Summary”.

You must press ENTER (it could be some other key depending on the terminal program) to send the command to the modem. Any time the modem receives a command, it sends a response known as a result code. The most common result codes are OK, ERROR, and the CONNECT messages that the modem sends to the computer when it is connecting to another modem. See a table of valid result codes at the end of this chapter.

You can issue several commands in one line, in what is called a command string. The command string begins with AT and ends when you press ENTER. Spaces to separate the commands are optional; the command interpreter ignores them. The most familiar command string is the initialization string, which is used to configure the modem when it is turned on or reset, or when your communications software calls another modem.

Note: This document applies to all the MT9234 products. However, some commands may not apply to all MT9234 builds.

A Note About Fax Commands

Fax commands are covered in two separate fax reference guides. These guides are posted on the MultiTech Web site: http://www.multitech.com/DOCUMENTS/Families/MultiModemZBA/manuals.asp.

- Fax Service Class 1 and Fax Service Class 1.0 Developer's Guide.
 Document number: S000262x
- Fax Developer's Guide for Classes 2 and 2.0/2.1
 Document number: S000239x
Data and General Commands

AT

Attention Code

Description: The attention code precedes all command lines except A/, A: and escape sequences.

ENTER Key

Description: Press the ENTER (RETURN) key to execute a command.

+++AT

Escape Sequence

Syntax: `+++AT<CR>`

Description: Allows the modem to exit data mode and enter on-line command mode. While in on-line command mode, AT commands are sent directly to the modem. Use the return to on-line data mode command (O<value> – Return to On-Line Data Mode) to return to data mode.

A/

Repeat Last Command

Syntax: `A/`

Description: This command repeats the last AT command. The modem repeats the command currently in the command buffer.

IMPORTANT:
- Do not use the AT prefix with this command.
- Do not conclude the command with a terminating character (ENTER).

A

Answer

Syntax: `ATA`

Description: This command instructs the modem to connect to the line and establish a connection with the remote modem or DCE. This command can be canceled if the modem receives a new command or character from the host system before the handshake begins.

Result Codes:
- `CONNECT` if a connection is established and the extended result code parameter is equal to 0. (See X<value> – Select Result Code and Monitor Call Progress).
- `CONNECT <rate>` if a connection is established and the extended result code parameter is not equal to 0.
- `NO CARRIER` if a connection cannot be established or the modem aborts the connection on request of the host system.
- `OK` if the commands are aborted or DTR is turned off by the host system when the data terminal ready control is not set to 0. See &D – DTR Control.
- `ERROR` if the modem is in on-line command mode when receiving the A command.

B

Communication Standard Setting

Description: This command selects the communication standard used by the modem.

Syntax: `ATB<value>`

Values: 0 Selects CCITT V.22 mode when modem is at 1200 bps.
1 Select Bell 212A when modem is at 1200 bps.
2 Deselect V.23 reverse channel (same as B3).
3 Deselect V.23 reverse channel (same as B2).
15 Select V.21 when the modem is at 300 bps.
16 Select Bell 103J when the modem is at 300 bps.

Defaults: 0 and 15

Result Codes: OK if <value> = 0-3, 15, 16
ERROR if <value> ≠ 1.
Chapter 1 – AT Commands, S-Registers, and Result Codes

D

Dial

Description: This command instructs the modem to begin the dialing sequence. The dial string, which is made up of the telephone number and dial modifiers is entered after the D command.

A dial string can be up to 60 characters long. Any digit or symbol may be dialed as touchtone digits. Characters such as spaces, hyphens, and parentheses are ignored by the modem and may be included in the dial string to enhance readability.

Syntax:

```
ATD<dial_strings>
```

Dial String Values: Phone number and dial modifiers.

Dial string modifiers:

- **L** Redial the last number. (Must be placed immediately after ATD.)
- **P** Select pulse-dialing.
- **T** Select tone-dialing.
- **V** Dial using speakerphone. Instructs the modem to switch to speakerphone mode and dial the number. Use the ATH command to disconnect the voice call.
- **W** Wait for dial tone. This command instructs the modem to wait for a second dial tone before processing the dial string. (X2, X4, X5, X6, or X7 must be selected.)
- **,** Pause during dialing for the amount of time set in register S8.
- **;** Return to command mode. Instructs the modem to return to command mode after it has finished dialing without disconnecting the call. This modifier must be the last character in the dial string.
- **!** Hook flash. Instructs the modem to go on-hook for 0.5 seconds and then return to off-hook.
- **@** Wait for quiet answer. Instructs the modem to wait for 5 seconds of silence after dialing the number. If silence is not detected, the modem sends a NO ANSWER result code back to the user.
- **^** Disable data calling tone transmission.
- **$** Detect AT&T call card “bong” tone. The character should follow the phone number and precede the user’s call card number:

```
ATDT1028806127853500$123456789
```

S=<location> Dial a number previously stored in the register. Instructs the modem to dial a telephone number previously stored using the &Z<location>=<dial_string> command. Valid storage locations are 0 to 2 (0–1 for Parallel (internal)).

Example: ATDS=2

Default: T

Result Codes:

- **CONNECT** if a connection is established and the extended result code parameter is equal to 0. (See X<value> – Select Result Code and Monitor Call Progress).
- **CONNECT <rate>** if a connection is established and the extended result code parameter is not equal to 0.
- **NO CARRIER** if a connection cannot be established or the modem aborts the connection on request of the host system.
- **BUSY** if the W or @ modifiers are used and a busy signal is detected.
- **NO ANSWER** if the @ modifiers is used and the remote ring followed by 5 seconds of silence is not detected before expiration of the connection timer. See S7 – Connection Completion Time-Out.
- **OK** if the commands are aborted or DTR is turned off by the host system when the data terminal ready control is not set to 0. See &D<value> – Data Terminal Ready (DTR) Control.
- **ERROR** if the modem is in on-line command mode when receiving the A command.
E
Echo Command
Description: Enables or disables the modem's echo feature. When the echo feature is selected and the modem is in the command mode, characters sent to the modem are sent back to the host and displayed on the monitor.
Syntax: ATE<value>
Values:
0 Do not echo keyboard input to the terminal.
1 Do echo keyboard input to the terminal.
Default: 1

F
Online Data Character Echo Command
Description: Controller-based products support this command to ensure backward compatibility with communications software that issues the F1 command.
Syntax: ATF<value>
Values:
0 Enable online data character echo. (Not supported.)
1 Disable online data character echo (included for backward compatibility).
Default: 1
Result Codes:
OK if <value> = 1
ERROR if <value> ≠ 1.

H
Hook Control
Description: Instructs the modem to go on-hook to disconnect a call or go off-hook to make the telephone line busy.
Syntax: ATH<value>
Values:
0 Go on-hook (hang up).
1 Go off-hook (make the phone line busy).
Default: 0
Result Codes:
OK if <value> = 0 to 1
ERROR if <value> ≠ 0 to 1.
I Request ID Information

Description: Use this command to display product information about the modem. In each case the information is transmitted to the host system followed by a final result code.

Syntax: ATI<value>

Values:
- 0, 3 Returns the modem identity string and version number.
- 1 Calculates a ROM checksum and displays it on the DTE (e.g., 12AB).
- 2 Performs a ROM check, calculates the checksum, and then verifies the checksum by displaying OK or ERROR.
- 4 Returns firmware version for the data pump (e.g., 94).
- 5 Returns the code version, board ID, and country/region ID in hexadecimal.
- 9 Returns the country/regional code in decimal.
- 11 Displays connection information as described below.

Default: 0

Result Codes: The ATI11 results are listed on two screens. To get to the second screen, press any key or ESC to Exit. The following is an example of the ATI11 results.

<table>
<thead>
<tr>
<th>Description</th>
<th>Status XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Connection</td>
<td>V.92</td>
</tr>
<tr>
<td>Initial Transmit Carrier Rate</td>
<td>28800</td>
</tr>
<tr>
<td>Initial Receive Carrier Rate</td>
<td>50666</td>
</tr>
<tr>
<td>Final Transmit Carrier Rate</td>
<td>28800</td>
</tr>
<tr>
<td>Final Receive Carrier Rate</td>
<td>50666</td>
</tr>
<tr>
<td>Protocol Negotiation Result</td>
<td>LAPM</td>
</tr>
<tr>
<td>Data Compression Result</td>
<td>V44</td>
</tr>
<tr>
<td>Estimated Noise Level</td>
<td>46</td>
</tr>
<tr>
<td>Receive Signal Power Level</td>
<td>(-dBm) 18</td>
</tr>
<tr>
<td>Transmit Signal Power Level</td>
<td>(-dBm) 12</td>
</tr>
<tr>
<td>Round Trip Delay (msec)</td>
<td>10</td>
</tr>
</tbody>
</table>

Description: Status

Near Echo Level (-dBm) NA
Far Echo Level (-dBm) NA
Transmit Frame Count 0
Transmit Frame Error Count 0
Receive Frame Count 1
Receive Frame Error Count 0
Retrain by Local Modem 0
Retrain by Remote Modem 0
Rate Renegotiation by Local Modem 0
Rate Renegotiation by Remote Modem 0
Call Termination Cause 0
Robbed-Bit Signaling 10
Digital Loss (dB) 6
Remote Server ID NA
Last PCM S PTR EBB3
Connection Time (msec) 19646

The ATI11 command may be issued from on-line command mode or after the end of a call. After a call, some of the values are no longer valid.

M Monitor Speaker Mode

Description: Turns the speaker on and off.

Syntax: ATM<value>

Values:
- 0 Speaker always off.
- 1 Speaker on until carrier signal detected.
- 2 Speaker always on when modem is off-hook.
- 3 Speaker on until carrier is detected, except while dialing.

Default: 1

Result Codes: OK if <value> = 0 to 3
ERROR if <value> ≠ 0 to 3.
Chapter 1 – AT Commands, S-Registers, and Result Codes

N

Modulation Handshake
Description: Sets the modem protocol for handling handshake negotiation at connection time if the communication speed of the remote modem is different from the speed of the ATN<value>
Values: 0 Modem performs handshake only at communication standard specified by S-Register S37 and the B<value> command.
1 Modem begins handshake at communication standard specified by S-Register S37 and command B. During handshake, fallback to a lower speed can occur.
Default: 1
Result Codes: OK if <value> = 0 to 1
ERROR if <value> ≠ 0 to 1.

O

Return Online to Data Mode
Description: Exits online command mode and enters online data mode. If the modem is not in online command mode when this command is received, the modem generates an ERROR result code.
Syntax: ATO<value>
Values: 0 Exits online command mode and returns to data mode.
1 Issues a retrain before returning to online data mode.
3 Issues a rate renegotiations before returning to online data mode.
Default: 0
Result Codes: CONNECT if <value> = 0, 1, 3 and result code and call progress monitor are set to 0 (X0).
CONNECT <rate> if <value> = 0, 1, 3 and the result code and call progress monitor are not set to 0 (X<value> where n = 1 to 7).
NO CARRIER if the connection is not successfully resumed.
ERROR if <value> ≠ 0, 1, 3.

P

Set Pulse or Tone Dialing Default
Description: Configures the modem for pulse (non-touch-tone) or Tone dialing. All subsequent D<dial_string> commands use pulse dialing until either the T command or a tone dial modifier is received by the modem. Tone dialing is the default setting. This command does not use parameters and generates an ERROR result code when parameters are attached to the command.
Syntax: ATP
Values: P Pulse Dialing
T Tone Dialing
Default: T

Q

Result Codes Enable/Disable
Description: Result codes are informational messages sent from the modem and displayed on the monitor. Basic result codes include OK, CONNECT, RING, NO CARRIER, and ERROR.
Use the Q<value> command to enable or disable result code generation by the modem. If result codes are disabled and an invalid parameter value is entered, the modem does not generate an ERROR result code because result codes are turn off.
Syntax: ATQ<value>
Values: 0 Enable result codes.
1 Disable result codes.
Default: 0
Result Codes: OK if <value> = 0 to 1
ERROR if <value> ≠ 0 to 1.
Sr S-Register Control
Description: Use this command to view or change an S-register. S-registers contain parameters used by the modem. This command has two forms, one to show the contents of the register and the other to change the contents of the register. Some registers are read only and are not affected by the \texttt{S<register number>=<value>} command. Each register has a specific function.
Syntax: \texttt{ATS<register number>??} Displays register contents.
\texttt{ATS<register number>=<value>} Sets the contents of the register to \texttt{<value>} if the register is not read only.
Default: None
Result Codes: OK if \texttt{<register number>} is a valid register.
ERROR if \texttt{<register number>} is not a valid register.

T Select Tone Dialing
Description: Configures the modem for DTMF (touch-tone) dialing. All subsequent \texttt{D<dial string>} commands use tone dialing until either the \texttt{P} command or a pulse dial modifier is received by the modem. Tone dialing is the default setting. This command does not use parameters and generates an ERROR result code when parameters are attached to the command.
Syntax: AT

V Result Code Format
Description: Controller-based modems generate result codes using one of two formats. Verbose mode generates result codes in the familiar text formats using words. Numerical mode generates result codes as a number. Each result codes has a number assigned to it.
Use this command to switch between numerical and verbose modes.
Call progress and negotiation progress messages are affected by this command.
Syntax: \texttt{ATV<value>}
Values: 0 Displays result codes as digits (terse response).
1 Displays result codes as words (verbose response).
Default: 1
Result Codes: OK if \texttt{<value> = 0 to 1}.
ERROR if \texttt{<value> \neq 0 to 1}.

W Result Code Options
Description: Use this command to select the modem’s CONNECT message options.
Syntax: \texttt{ATW<value>}
Values: 0 CONNECT result code reports DTE receive speed; disables protocol result codes.
1 CONNECT result code reports DTE receive speed; enables protocol result codes.
2 CONNECT result code reports DCE receive speed; enables protocol result codes.
Default: 2
Result Codes: OK if \texttt{<value> = 0 to 2}.
ERROR if \texttt{<value> \neq 0 to 2}.

X

Select Result Code and Monitor Call Progress

Description: Use this command to enable tone detection options used in the dialing process. As each function is chosen, the modem's result codes are also affected. Therefore, this command is frequently used to control the modem's responses. The primary function of this command is to control call response capabilities.

<table>
<thead>
<tr>
<th>Function</th>
<th>Enabled</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext Result Codes</td>
<td></td>
<td>Modem displays basic result codes, connect messages with data rate, and an indication of the modem's error correction and data compression operations.</td>
</tr>
<tr>
<td>Dial Tone Detect</td>
<td></td>
<td>Modem dials upon detection of a dial tone, and disconnects the call if the dial tone is not detected within 10 seconds.</td>
</tr>
<tr>
<td>Busy Tone Detect</td>
<td></td>
<td>Modem monitors for busy tones. Modem ignores any busy tones it receives.</td>
</tr>
</tbody>
</table>

Syntax:

```
ATX<value>
```

Values:

<table>
<thead>
<tr>
<th>Command</th>
<th>Extended Result Codes</th>
<th>Dial Tone Detect</th>
<th>Busy Tone Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>3</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>5, 6</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>7</td>
<td>Disbled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Default: 4

Result Codes: OK if <value> = 0 to 7.
ERROR if <value> ≠ 0 to 7.

Call Progress Result Codes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Result Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OK, RING, ERROR, CONNECT, NO CARRIER</td>
</tr>
<tr>
<td>1</td>
<td>OK, RING, ERROR, CONNECT<RATE>, NO CARRIER</td>
</tr>
<tr>
<td>2</td>
<td>OK, RING, ERROR, CONNECT<RATE>, NO CARRIER, NO DIALTONE</td>
</tr>
<tr>
<td>3</td>
<td>OK, RING, ERROR, CONNECT<RATE>, NO CARRIER, BUSY, BLACKLISTED</td>
</tr>
<tr>
<td>4</td>
<td>OK, RING, ERROR, CONNECT<RATE>, NO CARRIER, BUSY, BLACKLISTED, DELAYED, NO DIALTONE, CALL WAITING DETECTED</td>
</tr>
<tr>
<td>5, 6</td>
<td>OK, RING, ERROR, CONNECT<RATE>, NO CARRIER, BUSY, BLACKLISTED, DELAYED, NO DIALTONE, CALL WAITING DETECTED</td>
</tr>
<tr>
<td>7</td>
<td>OK, RING, ERROR, CONNECT, NO CARRIER</td>
</tr>
</tbody>
</table>

Z

Reset and Recall Stored Profile

Description: Use this command to make the modem go on-hook and restore the profile saved by the last &W command.

Note: Both Z0 or Z1 restore the same profile (See &W – Store Current Configuration). Agere Systems controller-based modems have only one stored profile.

Syntax:

```
ATZ<value>
```

Values:

<table>
<thead>
<tr>
<th><value></th>
<th>Result Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reset and restore stored profile (saved by the last &W command).</td>
</tr>
<tr>
<td>1</td>
<td>Same as Z0.</td>
</tr>
</tbody>
</table>

Default: None

Result Codes: OK if <value> = 0 to 1.
ERROR if <value> ≠ 0 to 1.
&C **Data Carrier Detect (DCD) Control**
Description: Use this command to control the modem’s response to receiving a remote modem’s carrier signal. Data carrier detect (DCD) is a signal from the modem to the computer indicating that the carrier signal is being received from a remote modem. The modem typically turns off DCD when it no longer detects the remote modem's carrier signal.
Syntax: AT&C<value>
Values:
0 DCD remains ON at all times.
1 DCD turns ON when the remote modem’s carrier signal is detected, and turns OFF when the carrier signal is not detected.
Default: 1
Result Codes: OK if <value> = 0 to 1.
ERROR if <value> ≠ 0 to 1.

&D **Data Terminal Ready (DTR) Control**
Description: Use this command to select the modem’s response to the data terminal ready (DTR) signal. The host system generates the DTR signal and supplies it to the modem.
Syntax: AT&D<value>
Values:
0 Modem ignores true status of DTR signal and treats it as always on. Use this command if the computer does not provide DTR to the modem.
1 If DTR is not detected while in online data mode, the modem enters command mode, issues an OK, and remains connected.
2 If DTR signal is not detected while in online data mode, the modem disconnects.
3 Resets the modem on the on-to-off DTR transition.
Default: 2
Result Codes: OK if <value> = 0 to 3.
ERROR if <value> ≠ 0 to 3.

&E **XON/XOFF Pacing Control**
Description: Enables or disables XON/XOFF pacing.
Syntax: AT&E<value>
Values:
12 Disables XON/XOFF pacing.
13 Enables XON/XOFF pacing.
Default: 12
Result Codes: OK if <value> = 12 to 13.
ERROR if <value> ≠ 12 to 13.

&F **Restore Factory Default Configuration**
Description: Use this command to reset the modem to the configuration programmed at the factory. This operation replaces all of the command options* and S-register settings in the active configuration with factory default values.
Note: In voice mode, the command line is ignored if the &F command is placed on the same line as the other commands. To load factory settings in voice mode, issue the &F<value> command by itself.
Syntax: AT&F<value>
Values:
0 Loads factory settings as active configuration.
Default: None
Result Codes: OK if <value> = 0.
ERROR if <value> ≠ 0.
Note: There are several noted exceptions to this command and caution should be used when determining the state of the command options once this command has been executed.
&G V.22bis Guard Tone Control
Description: Use this command to select which guard tone, if any, the modem will send while transmitting in the high band (answer mode). This command is only used in V.22 and V.22 bis mode. This option is not used in North America; it is for international use only.
Syntax: AT&G<value>
Values: 0 Disables guard tone.
1 Sets guard tone to 550 Hz.
2 Sets guard tone to 1800 Hz.
Default: 0
Result Codes: OK if <value> = 0 to 2.
ERROR if <value> ≠ 0 to 2.
Note: The &G command is not used in North America.

&K Local Flow Control Selection
Description: Use this command to select a flow control method.
Syntax: AT&K<value>
Values: 0 Disables flow control.
3 Enables CTS/RTS hardware flow control.
4 Enables XON/XOFF software flow control.
Default: 3
Result Codes: OK if <value> = 0, 3, or 4.
ERROR if <value> ≠ 0, 3, or 4.

&L Leased Line Operation
Description: Sets standard dial-up or leased-line operation. Note: This command does not apply to all models or build options.
Syntax: AT&L<value>
Values: 0 The modem is set for standard dial-up operation.
1 The modem is set for leased line operation in originate mode.
2 The modem is set for leased line operation in answer mode.
Default: 0
Note: For &L1 and &L2, there is a 30-second window between power up and the starting of the leased line handshake. During this time, you can turn off the command, if desired.
Result Codes: OK if <value> = 0 to 2.
ERROR if <value> ≠ 0 to 2.

&P Pulse Dial Make-to-Break Ratio Selection
Description: Use this command to select the make-to-break ratio. This command is effective only for Japan.
Syntax: AT&P<value>
Values: 0 Selects 39% to 61% make-to-break ratio at 10 pulses per second.
1 Selects 33% to 67% make-to-break ratio at 10 pulses per second.
2 Selects 33% to 67% make-to-break ratio at 20 pulses per second.
Default: 1
Note: The &P2 command is available only if the country/regional code is set to Japan.
Result Codes: OK if <value> = 0 to 2.
ERROR if <value> ≠ 0 to 2.
&Q **Asynchronous Communications Mode**

Description: This command is supported to ensure backward compatibility with communication software that issues the &Q command. The preferred method for changing the asynchronous communication mode is to use the `\N` command.

Syntax:

```
AT&Q<value>
```

Values:

- 0 Asynchronous with data buffering. Same as `\N0`.
- 5 Error control with data buffering. Same as `\N3`.
- 6 Asynchronous with data buffering. Same as `\N0`.
- 8 MNP error control mode. If MNP error control is not established, the modem falls back according to the setting in `S36`.
- 9 V.42 or MNP error control mode. If neither error control is established, the modem falls back according to the setting in `S36`.

Default: 5

Result Codes:

- OK if `<value> = 0, 5, 6, 8, or 9.
- ERROR if `<value> ≠ 0, 5, 6, 8, or 9.`

&S **Data Set Ready (DSR)**

Description: Use this command to control DSR action.

Syntax:

```
AT&S<value>
```

Values:

- 0 DSR is always ON.
- 1 DSR goes ON only during a connection.

Default: 0

Result Codes:

- OK if `<value> = 0, 1.`
- ERROR if `<value> ≠ 0, 1.`

&T **Self-Test Commands**

Description: Use this command to perform diagnostic tests on the modem. Each test is designed to isolate a problem location when experiencing periodic data loss or random errors.

Syntax:

```
AT&T<value>
```

Values:

- 0 Terminates the test in progress.
- 1 The &T1 command runs the Local Analog Loopback Test. This test verifies modem's transmitter and receiver circuits are functioning properly. To work properly, the modem must be off-line.
- 3 The AT3 runs the Local Digital Loopback Test. This test allows you to verify that the remote computer or terminal, the remote modem, serial ports, the telephone line, and the local modem are functioning properly. To work properly, the modem must be online.
- 4 The &T4 command must be sent to the remote modem to run the Remote Digital Loopback Test.
- 6 The &T6 command runs the Remote Digital Loopback Test. This test allows you to verify that the local computer or terminal, the two modems, and the transmission line between them are functioning properly. To work properly, the modem must be online.

Default: None

Result Codes:

- OK if `<value> = 0.`
- CONNECT if `<value> = 0` or `3`.
- ERROR if `<value> ≠ 0, 1, or 3.`

&V **View Active Configuration**

Description: Use this command to view the active configuration.

Syntax:

```
AT&V
```
&W Store Current Configuration
Description: Use this command to store the modem's command options and all S- registers except S3, S4, and S5. The Z0 command or a power-up reset of the modem restores these profiles.

Note: This command is not valid during a cellular call.
Syntax: AT&W<value>
Values: 0 Stores current configuration as profile 0.
Default: 0
Result Codes: OK if <value> = 0.
ERROR if <value> ≠ 0.

&Z Store Dialing Location and Number
Description: Use this command to store a dialing string.
The format for the command is &Z<storage_location> = <dialing_string>.
The dial string may contain up to 40 characters.
The ATDS=<storage_location> command dials using the stored string.
Syntax: AT&Z<location>=<stored number>
Values: <storage_location> = 0 to 2 for serial; 0 to 1 for parallel.
<dialing_string> = Dialing number.
Default: None
Result Codes: OK if <value> = 0 to 2.
ERROR if <value> ≠ 0 to 2.
Example: AT&Z0=5550123
Note: The command to Store Dialing Location and Number for Callback Security
operates differently from the normal Store Dialing Location and Number.
To store a Callback Security number, type the following:
 AT&Zy=[+][-]ATzDvx[,?] where:
 y is the memory location (0-29)
z stands for additional commands
v stands for the choice of T for Tone Dialing or P for Pulse Dialing
x is the phone number
? stands for the optional callback number
Example: AT&Z0=ATM0DT5551212

\A Select Maximum MNP Block Size
Description: Use this command to select a MNP error corrected link with a maximum block size controlled by the parameter <block size>.
Syntax: AT\A<value>
Values: 0 64-character maximum
1 128-character maximum
2 192-character maximum
3 256-character maximum
Default: 3
Result Codes: OK if <value> = 0 to 3.
ERROR if <value> ≠ 0 to 3.
\B
Transmit Break
Description: Use this command in non-error-controlled mode. The command causes the modem to transmit a break signal to the remote modem. The minimum break length is 100 ms and the maximum break length is 900 ms. The `<break_time>` parameter has values between one and nine with each increment representing 100 ms. The default of `<value>` = 3 corresponds to a length of 300 ms. The command works in conjunction with the \K command.
Syntax: AT\B<value>
Values: <break_time> = 0–9 in 100 ms units
Default: 3 (300 ms)
Result Codes: OK if `<value>` = 0, 1. ERROR if `<value>` ≠ 0, 1.

\K
Break Control
Description: Use this command to control the response of the modem to a break received from the DTE, remote modem, or the \B<value> command. The command values are different in three situations:
Syntax: AT\K<value>
Values: \K<value> – Modem Is Operating in Data Transfer Mode
The modem receives a break from the DTE when it is operating in data transfer mode.

<table>
<thead>
<tr>
<th>Values</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 2, 4</td>
<td>Enter online command mode, no break sent to remote modem.</td>
</tr>
<tr>
<td>1</td>
<td>Clear data buffers and send a break to remote modem.</td>
</tr>
<tr>
<td>3</td>
<td>Send a break to the remote modem immediately.</td>
</tr>
<tr>
<td>5</td>
<td>Send a nondestructive, nonexpedited break to remote modem.</td>
</tr>
</tbody>
</table>

5 is the default.
\K<value> – Modem Is in Online Command Mode During Data Connection
The modem is in the online command state (waiting for AT commands) during a data connection, and the \B<value> command is received in order to send a break to the remote modem.

<table>
<thead>
<tr>
<th>Values</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>Clear data buffers and send break to the remote modem.</td>
</tr>
<tr>
<td>2, 3</td>
<td>Send a break to the remote modem immediately.</td>
</tr>
<tr>
<td>4, 5</td>
<td>Send a break to the remote modem in sequence with data.</td>
</tr>
</tbody>
</table>

4, 5 are the defaults.
\K<value> – Break Is Received During Connection
The modem receives a break from the remote modem during a connection.

<table>
<thead>
<tr>
<th>Values</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>Clear data buffers and send break to the DTE.</td>
</tr>
<tr>
<td>2, 3</td>
<td>Send a break to the DTE immediately.</td>
</tr>
<tr>
<td>4, 5</td>
<td>Send a break to the DTE in sequence with the received data.</td>
</tr>
</tbody>
</table>

4, 5 are the defaults.
Result Codes: OK if `<value>` = 0 to 5. ERROR if `<value>` ≠ 0 to 5.
\N **Error Correction Mode Selection**
Description: Use this command to select the type of error control used by the modem when sending or receiving data.

Syntax: \AT\N<value>

Values:
0 Buffer mode. No error control (same as \&Q6).
1 Direct mode.
2 MNP or disconnect mode. The modem attempts to connect using MNP2-4 error control procedures. If this fails, the modem disconnects. This is also known as MNP reliable mode.
3 V.42, MNP, or buffered. The modem attempts to connect in V.42 error control mode. If this fails, it will attempt to connect in MNP mode. If this fails, the modem connects in buffer mode and continues operation. This is also known as V.42/MNP auto reliable mode (same as \&Q5).
4 V.42 or disconnect. The modem attempts to connect in V.42 error control mode. If this fails, the modem disconnects.
5 V.42, MNP, or buffered (same as \N3).
7 V.42, MNP, or buffered (same as \N3).

Default: 3

Result Codes:
OK if <value> = 0 to 5, or 7.
ERROR if <value> ≠ 0 to 5, or 7.

\Q **Local Flow Control Selection**
Description: Use this command to set the local flow control method.

Syntax: \AT\Q<value>

Values:
0 Disable flow control (same as \&K0).
1 XON/XOFF software flow control (same as \&K4).
3 RTS/CTS to DTE. (same as \&K3)

Default: 3

Result Codes:
OK if <value> = 0, 1, 3.
ERROR if <value> ≠ 0, 1, 3.

\T **Inactivity Timer**
Description: Use this command to specify the delay time used by the inactivity timer. The delay time is the length of time in minutes that the modem waits during periods of inactivity before disconnecting. Periods of inactivity are defined by no data being sent or received by the DCE. To disable the inactivity timer use the T0 command. The delay time may also be specified in S-register S30.

Syntax: \AT\T<value>

Values:
0 Inactivity timer disabled.
1 to 255 Specifies the length of time in minutes that the modem will wait before disconnecting when no data is sent or received.

Default: 0

Result Codes:
OK if <value> = 0 to 255.
ERROR if <value> ≠ 0 to 255.

\V **Protocol Result Code**
Description: Use this command to enable or disable protocol result codes.

Syntax: \V<value>

Values:
\V0 Disables protocol result code appended to the DCE speed.
\V1 Enables protocol result code appended to the DCE speed.
\V2 Same as \V1.

Default: \V1

Result Codes:
OK if <value> = 0, 1, 2.
ERROR if <value> ≠ 0, 1, 2.
\X \XON/XOFF Pass-Through

Description: Use this command to restrict the XON/XOFF flow control to the local DCE for processing or to have the local DCE send the flow control characters to the remote DCE.

Syntax: AT\X<value>

Values: 0 Modem processes XON/XOFF flow control characters locally.
1 Modem passes XON/XOFF flow control characters.

Default: 0

Result Codes: OK if <value> = 0, 1.
ERROR if <value> ≠ 0, 1.

-C \Data Calling Tone

Description: Enables/disables the V.25 data calling tone to deny/allow data/fax/voice discrimination.

Syntax: AT-C<value>

Values: 0 Disable V.25 data calling tone to deny remote data/fax/voice discrimination.
1 Enable V.25 data calling tone to allow remote data/fax/voice discrimination.

Default: 1

Result Codes: OK if <value> = 0, 1.
ERROR if <value> ≠ 0, 1.

%A \Adaptive Answer Result Code Enable

Description: The %A command controls whether the DATA or FAX result codes will be sent by the modem. The modem must be in fax mode for this command to work. Also, the modem must be set to +FAA=1, which enables the modem to distinguish between a fax and a data call. When these commands are enabled, the modem sends DATA to the computer when it detects data tones and FAX when it detects fax tones. These strings are used by some servers to select the appropriate communication program.

Syntax: AT%A<value>

Values: 0 Disables adaptive answer result codes.
1 Enables adaptive answer result codes.

Default: 0

Result Codes: OK if <value> = 0, 1.
ERROR if <value> ≠ 0, 1.

%B \View Numbers in Blacklist

Description: Blacklisting is a method of handling failed or troubled calls encountered during automatic dialing. This command is only used to display the contents of the blacklist when blacklisting is active. It does not affect the functionality associated with blacklisting.

When the blacklisting option is active, use this command to display the telephone numbers and status of any failed or troubled calls. The blacklisting option is associated with the country selection. Some countries have national requirements which prohibit repeat calls to the same number through automatic dialing.

Syntax: AT%B

Values: N/A

Result Codes: <list of phone numbers and their status> if country supports blacklisting.
OK if no failed calls occur.
ERROR if country selection does not support blacklisting.
%C Data Compression Control

Description:
Use this command to enable or disable data compression. This command enables or disables V.44, V.42 bis, and MNP class 5 data compression. The command overwrites the current status of the +DCS command. The command is also overwritten by changes made by the +DCS command. On-line changes do not take effect until a disconnect occurs.

Syntax:
`AT%C<value>`

Values:
- 0: Disable V.42bis/MNP 5. No data compression.
- 1: Enable V.42bis/MNP 5. Data compression enabled.

Default: 1

Result Codes:
- OK if `<value>` = 0, 1.
- ERROR if `<value>` ≠ 0, 1.

%DC AT Command Control

Description:
Use this command to set whether or not the modem will respond to AT commands. **Note:** This command does not work with parallel, USB, PCI, PCIe.

Syntax:
`AT%DC<value>`

Values:
- 0: The modem responds to AT commands.
- 1: The modem ignores AT commands. The modem will respond to AT%DC for 10 seconds after it is turned on.

Default: 0

%DT Set AT Command Mode Timer

Description:
Sets the length of time that the command mode will be disabled when set for %DC1 (the modem ignores AT commands). **Note:** This command does not work with parallel, USB, PCI, PCIe.

Syntax:
`AT%DT<value>`

Values:
- 0-255 in 1 second increments

Default: 0

%E Fallback and Fall Forward Control

Description:
This command provides the option for the modem to automatically monitor line quality, to fall back when line quality is insufficient, and to fall forward when line quality is sufficient.

Syntax:
`AT%E<value>`

Values:
- 0: Disable fallback and fall forward.
- 1: Enable fallback and disable fall forward.
- 2: Enable fallback and fall forward.

Default: 2

Result Codes:
- OK if `<value>` = 0, 1, 2.
- ERROR if `<value>` ≠ 0, 1, 2.

%H Set Callback Security – Direct Connect Enable

Description:
Sets Callback Security to normal operation or to direct connect. **Note:** This command does not work with parallel, USB, PCI, PCIe.

Syntax:
`AT%H<value>`

Values:
- 0: Sets callback security to normal operation.
- 1: All callback security calls will be direct connect regardless of whether the password or phone number has the - character.

Default: 0
%S Command Speed Response
Description: Sets the modem to respond to AT commands at desired speeds.
Note: This command does not work with parallel, USB, PCI, PCIe.
Syntax: AT%%%<value>
Values: 0 Sets modem to respond to AT commands at all normal speeds.
1 AT commands accepted at 115200 bps only. Other speeds are ignored.
Default: 0

+A8E V.8 and V.8bis Operation Controls
Description: Use this command to set the control parameters for early call negotiation through V.8 and V.8bis. +A8E may also be used as an action command to reinitiate V.8 or V.8bis if an earlier attempt to use either protocol has failed. (ITU-T Recommendation V.251 (02/98) standardized this command. However, the controller-based command set only includes partial support for the standard.)

On-Hook: If issued while the modem is on-hook, used to precondition V.8 and V.8bis originating and answering operation. It is issued by the DTE before the Dial (D) or Answer (A) command.

Off-Hook: If issued while the modem is off-hook, to (re)start V.8 or V.8bis negotiation. For example, if initial V.8 negotiation failed, but subsequent T.30 negotiation indicated V.8 capability, this command may be used to initiate V.8 negotiation.

The ATD and ATA commands behave as specified in V.250, and +A8n indications are not generated by the modem.

For subparameter values <v8o>=6 and <v8a>=5, the +A8l indications are issued during the course of the V.8 session to notify the DTE when the relevant V.8 signals are received.

<v8o> enables or disables DCE-controlled V.8 origination negotiation.
<v8a> enables or disables DCE-controlled V.8 answer negotiation.
<v8b> disables V.8 negotiation or sets it to DCE controlled or DTE controlled negotiation.
<a8cf> sets the V.8 CI signal call function to the value specified.
The valid range for this parameter is 0 to FF, with a default of 0xC1.

Syntax: AT+A8E=<v8o>,<v8a>,<v8cf>,<v8b>

<v8o> Values: <v8o> Decimal number which enables/disables issuance of +A8x indications during modem-controlled V.8 origination negotiation.
1 Enable DCE-controlled V.8 origination negotiation without +A8x indications. (Default)
6 Enable DCE-controlled V.8 origination negotiation with +A8x indications.

<v8a> Values: <v8a> Decimal number which enables/disables issuance of +A8x indications during modem-controlled V.8 answer negotiation.
1 Enable DCE-controlled V.8 answer negotiation without +A8x indications. (Default)
5 Enable DCE-controlled V.8 answer negotiation with +A8x indications.

<v8b> Values: <v8b> Decimal number which enables/disables V.8bis negotiation.
0 Disable V.8 negotiation.
1 Enable DCE-controlled V.8bis negotiation. (Default)
2 Enable DTE-controlled V.8 negotiation.

<v8cf> Values <v8cf> Set the V.8 CI signal call function to the hexadecimal octet XY.
00 (Default)
21
C1

Reporting: +A8E? Reports current or selected values.
+A8E=? Reports supported parameter values.
+DCS Select V.42bis or V.44 Data Compression

Description: Use this command to configure the available compression algorithms. The `<v42bis>` parameter enables or disables the V.42 bis and the `<v44>` parameter enables or disables V.44. This command works in conjunction with the %C command and the result of either the %C command or the +DCS command replaces the current data compression configuration.

Syntax:

```
AT+DCS=<v42bis>,<v44>
```

Values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>V.42bis and V.44 data compression are both disabled.</td>
</tr>
<tr>
<td>0,1</td>
<td>V.42bis is disabled; V.44 data compression is acceptable.</td>
</tr>
<tr>
<td>0,2</td>
<td>V.42bis is disabled; V.44 only when connected to a V.92 server.</td>
</tr>
<tr>
<td>1,0</td>
<td>V.42bis is acceptable; V.44 data compression is disabled.</td>
</tr>
<tr>
<td>1,1</td>
<td>V.42bis is acceptable; V.44 data compression is acceptable.</td>
</tr>
<tr>
<td>1,2</td>
<td>V.42bis is acceptable; V.44 only when connected to a V.92 server.</td>
</tr>
</tbody>
</table>

Reporting:

- `+DCS?` Reports current or selected values.
- `+DCS=?` Reports allowed parameter values.

Result Codes:

- **OK** if `<v42bis>` = 0, 1 and `<v44>` = 0 to 2.
- **ERROR** if `<v42bis>` ≠ 0, 1 or `<v44>` ≠ 0 to 2.
+DR V.44 Data Compression Reporting

Description: Enables or disables the V.44 data compression report. If the compression report is enabled, the +DR:<type> intermediate result code reports the current DCE-DCE data compression type. It is issued after the Error Control Report (+ER) and before the final result code (e.g., CONNECT).

Syntax: \texttt{AT+DR=<value>}

Values:
0 Disables the V.44 compression report.
1 Enables the V.44 compression report.

Default: 0

Reporting:
+DR? Reports current or selected values.
+DR=? Reports supported parameter values.

Result Codes:
OK if <value> = 0, 1.
ERROR if <value> \neq 0, 1.
+DR: NONE Data compression not in use.
+DR: V42B V.42bis is in use in both directions.
+DR: V44 V.44 is in use in both directions.

+DS V.42bis Data Compression

Description: This extended-format compound parameter controls the V.42bis data compression function if this function is provided in the modem.

Syntax: \texttt{AT+DS=<direction>,<compr_neg>,<max_dict>,<max_string>}

<direction> Values:
0 Do not negotiate V.42 bis compression.
3 Modem accepts V.42 bis compression in both directions. Default.

<compr_neg> Values:
0 Do not disconnect if V.42bis is not negotiated by the remote modem as specified in <direction>. Default.

<max_dict> Values:
Specifies maximum number of dictionary entries (2048 entries) negotiated. May be used by the DTE to limit the code word size transmitted, based on its knowledge of the nature of the data to be transmitted. Default = 2048.

<max_string> Values:
Specifies maximum string length (32 bytes) to be negotiated. Default = 32.

Reporting:
+DS? Reports current or selected values.
+DS=? Reports allowed parameter values.

Result Codes:
OK
ERROR
+DS44 V.44 Data Compression

Description: Controls the V.44 data compression function.

Syntax:
```
AT+DS44=<direction>,<compression_negotiation>,<compatibility>,
<max_codewords_tx>,<max_codewords_rx>,<max_string_tx>,
<max_string_rx>,<max_history_tx>,<max_history_rx>
```

- **<direction> Values:** Specifies the DTE direction of the data compression.
 - 0 No compression.
 - 3 Compression in both directions (default).

- **<max_codewords_tx> Values:** Specifies the maximum number of code words to be negotiated in the transmit direction.
 - 1024 Default.
 - 256–2048 Maximum number of code words in transmit direction.

- **<max_codewords_rx> Values:** Specifies the maximum number of code words to be negotiated in the receive direction.
 - 1024 Default.
 - 256–2048 Maximum number of code words in receive direction.

- **<max_string_tx> Values:** Specifies the maximum string length to be negotiated in the transmit direction.
 - 255 Default.
 - 31–255 Maximum string length in transmit direction.

- **<max_string_rx> Values:** Specifies the maximum string length to be negotiated in the receive direction.
 - 255 Default.
 - 31–255 Maximum string length in receive direction.

- **<max_history_tx> Values:** Specifies the maximum length of the history buffer to be negotiated in the transmit direction.
 - 5120 Default.
 - 512–11008 History buffer size in transmit direction.

- **<max_history_rx> Values:** Specifies the maximum length of the history buffer to be negotiated in the receive direction.
 - 4096 Default.
 - 512–11008 History buffer size in receive direction

Reports:
- `+DS44=?` Reports supported options.
 - Example: `+DS44: (3, 0), (0), (0), (256-2048), (256-2048), (31-255), (31-255),
 (512-11008), (512-11008)`
- `+DS44?` Reports current or selected options.
 - Example: `+DS44: 3, 0, 0, 1024, 1024, 255, 255, 5120, 4096`

Result Codes:
- OK
- ERROR
+EB Break Handling in Error Control Operation
Description: This extended-format compound parameter controls the break handling in V.42 operation. It accepts three numeric subparameters.
Syntax: AT+EB=<break_selection>,<default_length>

<break selection> Values:
0 Ignore break. Default.
1 Nonexpedited, nondestructive.
2 Expedited, nondestructive.
3 Expedited, destructive.

<default_length> Values:
10 ms to 90 ms Specify break length.

Reports:
+EB=? Reports supported options.
+EB? Reports current or selected options.

+EFCS 32-bit Frame Check Sequence
Description: This extended-format numeric parameter controls the use of the 16-bit or 32-bit frame check sequence (FCS) option in V.42.
Syntax: AT+EFCS=<value>

Value: 0 Sets the 32-bit frame check sequence to a 16-bit frame check sequence.

Reports:
+EFCS? Reports current or selected options.
+EFCS=? Reports supported options.

+ER Error Control Report
Description: Use this command to enable or disable the error control report.
Syntax: AT+ER<value>

Values:
+ER0 Error control reporting disabled (no +ER intermediate result code transmitted). Default.
+ER1 Error control reporting enabled (+ER intermediate result code transmitted).

Reports:
+ER? Reports current or selected options.
+ER=? Reports supported options.
+ER <type> The +ER <type> reported is the current (negotiated or renegotiated) modem-modem error control type. If enabled, the intermediate result code is transmitted at the point during error control negotiation (handshaking) at which the modem has determined which error control protocol will be used (if any), before the final result code (e.g., CONNECT) is transmitted. Specifically, the +ER intermediate result code is issued after the modulation report (+MCR and +MRR) and before the data compression report (+DR).

Result Codes:
+ER: NONE Data compression not in use.
+ER: LAPM V.42 LAPM protocol is in use.
+ER: ALT V.42 alternative protocol is in use.
OK if <value> = 0, 1.
ERROR if <value> ≠ 0, 1.
+ES Error Control Selection

Description:
Use this command to select the error correction mode. The setting of this command overwrites the \N command, and the +ES command is overwritten by the setting on a \N command.

Syntax:
AT+ES=<orig_rqst>,<orig_fbk>,<ans_fbk>

Values:

<table>
<thead>
<tr>
<th>Values Combination</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ES=1,0,1</td>
<td>Buffered mode</td>
</tr>
<tr>
<td>+ES=0,1,0</td>
<td>Direct mode</td>
</tr>
<tr>
<td>+ES=4,4,6</td>
<td>MNP or disconnect mode</td>
</tr>
<tr>
<td>+ES=3,3,5</td>
<td>LAPM or disconnect mode</td>
</tr>
<tr>
<td>+ES=4,0,6</td>
<td>MNP or buffered mode</td>
</tr>
<tr>
<td>+ES=3,0,2</td>
<td>LAPM, MNP, or buffered mode (Default)</td>
</tr>
<tr>
<td>+ES=2,0,2</td>
<td>LAPM or buffered mode</td>
</tr>
<tr>
<td>+ES=3,2,4</td>
<td>LAPM, MNP, or disconnect mode</td>
</tr>
</tbody>
</table>

Reports:

- +ES? Reports current or selected options.
- +ES=? Reports supported options.

Result Codes:

- OK
- ERROR

+ETBM Call Termination Buffer Management

Description:
Sets the behavior of the modem upon call termination. Only +ETBM=0,0,0 is a valid combination. This means that the modem will discard all the buffered data when the call is terminated.

Syntax:
AT+ETBM=<pending_TD>,<pending_RD>,<timer>
AT+ETBM=0,0,0

Values:

- **<pending_TD>** 0 specifies that disconnect will occur immediately and all buffered transmit data will be discarded when the local DTE requests call disconnection.
- **<pending_RD>** 0 specifies that disconnect will occur immediately and all buffered receive data will be discarded when the local DTE requests call disconnection.
- **<timer>** 0 specifies that the modem will not attempt to deliver the buffered data before abandoning the attempt and discarding remaining data.

Reports:

- +ETBM? Reports current or selected options.
- +ETBM=? Reports supported options.

Result Codes:

- OK
- ERROR
+FCLASS Fax Class Indication
Description: Use this command to set the modem service class. The service class determines if
the modem is in data, FAX, or voice mode.
Syntax: AT+FCCLASS <Value>
Values:
+FCCLASS=0 Selects data mode.
+FCCLASS=1.0 Selects Class 1.0 FAX mode.
+FCCLASS=1 Selects Class 1 FAX mode.
+FCCLASS=2 Selects Class 2 FAX mode.
+FCCLASS=2.0 Selects Class 2.0 FAX mode.
+FCCLASS=2.1 Selects Class 2.1 FAX mode.
+FCCLASS=8 Selects voice mode.
Reports:
+FCCLASS? Reports current or selected options.
+FCCLASS=? Reports supported options.
Result Codes: OK or ERROR

+GCAP Complete List of Capabilities Request
Description: Use this command to display the modem's supported capabilities. The +GCAP
command is an action command that always generates an OK result code.
Syntax: AT+GCAP
Sample Responses
+GCAP: +FCLASS, +MS, +ES, +DS, for a data modem that supports all capabilities
listed. Where:
+FCCLASS (Class 1 and Class 2 facsimile DCE control)
+MS +M commands (Modulation Control: +MS and +MR commands)
+ES +E commands (Error Control: +ES, +EB, +ER, +EFCS, +ETBM)
+DS +D commands (Data Compression: +DS and +DR)

+GCI= Country of Installation
Description: Use this command to set the modem country/region code.
Syntax: AT+GCI=<country code>
Reports:
+GCI? Reports current or selected option.
+GCI=? Reports supported options.
Result Codes: OK or ERROR

+GMI Manufacturer Identification Request
Description: Displays the modem product manufacturer.
Syntax: AT+GMI?
Reports:
+GMI? Reports modem product manufacturer.
Result Codes: OK when using the +GMI and +GMI? syntax.
ERROR when using the +GMI=? syntax.

+GMM Model Identification Request
Description: Displays the modem identity string.
Syntax: AT+GMM? or AT+GMM=?
Reports:
+GMM? Reports current or selected options.
+GMM=? Reports supported options.
Result Code: OK
+GMR Revision Request
Description: Displays the version of the modem code.
Syntax: AT+GMR? or AT+GMR=?
Reports: +GMR? Reports version of the modem code.
+GMR=? Reports version of the modem code.
Result Code: OK

+IFC DTE-DCE Local Flow Control
Description: Use this command to select the local flow control method. The input parameters of the +IFC command overwrite the settings of the \Q and \X<value> commands. The reverse is also true. By modifying the settings of the \Q and \X<value> commands, the +IFC command parameters are overwitten.
Syntax: AT+IFC=<DCE_by_DTE>,<DTE_by_DCE>
Values:
+IFC=0,0 No flow control.
+IFC=1,1 Software flow control.
+IFC=2,2 Hardware flow control. (Default)
Reports:
+IFC? Reports current or selected options.
+IFC=? Reports supported options.
Result Codes: OK
ERROR

+ILRR DTE-DCE Local Rate Reporting
Description: Use this command to display or hide the local rate report result code. If the rate report is enabled, the reported <rate> is the current DTE-DCE rate. The rate report is transmitted after any modulation, error control, or data compression reports, and before the final result code (e.g., CONNECT).
Syntax: AT+ILRR=<value>
Values:
0 Disables the local rate report. (Default)
1 Enables the local rate report.
Reports:
+ILRR? Reports current or selected options.
+ILRR=? Reports supported options.
Result Codes: OK
ERROR

+IPR Fixed DTE Rate
Description: Use this command to set the DTE to DCE transmission rate. There are twelve fixed transmission rates used by the DTE to communicate with the DCE. These commands select one of the predefined transmission rates. If a rate is entered which is not supported, the transmission rate defaults to the next lower rate.
Syntax: AT+IPR=<DTE rate>
Values:
+IPR=0 Automatic rate detection. (Default)
+IPR=110 100 bits/s
+IPR=300 300 bits/s
+IPR=600 600 bits/s
+IPR=1200 1200 bits/s
+IPR=2400 2400 bits/s
+IPR=4800 4800 bits/s
+IPR=9600 9600 bits/s
+IPR=14400 14400 bits/s
+IPR=19200 19200 bits/s
+IPR=38400 38400 bits/s
+IPR=57600 57600 bits/s
+IPR=115200 115200 bits/s
Chapter 1 – AT Commands, S-Registers, and Result Codes

Reports:
+IPR? Reports current or selected options.
+IPR=? Reports supported options.
Result Code: OK

+MR **Modulation Reporting Control**
Description: Use this command to hide or display the modulation report. When the modulation report is enabled, the DCE transmits the +MRR: <rate>, <rx_rate> and the +MCR:<carrier> intermediate result codes to the DTE. The <carrier> reported is the current modulation; for example, V.34. The <rate> reported is the transmit rate in bits per second or is zero if negotiation fails. The <rx_rate> is the receive channel rate and is only reported when different receive and transmit rates have negotiated. The intermediate result codes are transmitted after the modulation and the rate have been determined and before any error control or data compression reports or the final result code (e.g., CONNECT) is transmitted.
Syntax: AT+MR=<value>
Values: +MR=0 Turns off the modulation report.
+MR=1 Turns on the modulation report.
Reports: +MR? Reports current or selected options.
+MR=? Reports supported options.
Result Code: OK
ERROR

+MS **Modulation Selection**
Description: Sets the modem’s modulation, the modulation minimum and maximum transmission rates, and the status of automatic modulation negotiation (automode). The <carrier>, <min_rate>, and <max_rate> parameters define the modulation and its minimum and maximum transmission rates. <min_rx_rate> and <max_rx_rate> define the minimum and maximum reception rates. The minimum transmission and reception rates are always set to 0. The <automode> parameter enables or disables automatic modulation negotiation. If a subsequent +MA command is not provided, the automode parameters are constrained by the modulation set by the <carrier> parameter. The +MA command can further restrict the automatic modulation negotiation settings but it cannot set a modulation that is higher than the modulation set by the +MS command. Once a modulation is selected by the +MS command, the autorate in both directions and the automode is activated unless <max_rate> is specified by in the command. The settings of this command overwrite the settings of S28 and S37. Likewise, changes to these registers overwrite the settings of the +MS command.
Chapter 1 – AT Commands, S-Registers, and Result Codes

Syntax: AT+MS=<carrier>,<automode>,<min_rate>,<max_rate>,<min_rx_rate>,
 <max_rx_rate>

<carrier> Values: V92 V.92 (default)
 V90 V.90
 V34 V.34
 V32B V.32bis
 V32 V.32
 V22B V.22bis
 V.22
 Bell212A Bell 212A*
 V23C V.23, constant carrier, asymmetric FDM
 V21
 Bell103 Bell 103*
*The +MS command was standardized by ITU-T recommendation V.250. However, the standard command does not include the additional functionality provided by the Bell212A and Bell103 values of the <carrier> parameter.

<automode> Values: Automatic modulation negotiation is enabled or disabled by <automode>. However, if a value is specified for the <max_rate> then, automatic rate selection is disabled and the modem will attempt to connect at the specified rate.

0 Disables automode.
1 Enables automode. (Default)

<max_rate> Values: The <max_rate> specifies the highest connections rate for the DCE.

31200 Determined by modulation selected in <carrier>. (Default)
300-56000 Value limited by modulation selected <carrier>.

<max rate> for each <carrier>.

V34 2400 bits/s—33600 bits/s in steps of 2400 bits/s.
V32bis 2400 bits/s—14400 bits/s in steps of 2400 bits/s.
V32 2400 bits/s—9600 in steps of 2400 bits/s.
V22bis 2400 bits/s.
V22 1200 bits
V23C, Bell212A 1200 bits/s.
V.21, Bell103 300 bits/s.

Valid <max rate> Range

56000 Determined by modulation selected in <carrier>. (Default)
300-56000 Value limited by modulation selected <carrier>.

Valid <max rx rate> Value for each <carrier>

V92 28000 bits/s—56000 bits/s in steps of 1333 bits/s
V90 28000 bits/s—56000 bits/s in steps of 1333 bits/s
V34 2400 bits/s—33600 bits/s in steps of 2400 bits/s
V32bis 2400 bits/s—14400 bits/s in steps of 2400 bits/s
V32 2400 bits/s—9600 in steps of 2400 bits/s.
V22bis 2400 bits/s.
V22 1200 bits
V23C, Bell212A 1200 bits/s
V.21, Bell103 300 bits/s.

Reports:
+MS? Reports current or selected options.
+MS=? Reports supported options.

Result Code: OK
ERROR
$D
DTR Dialing
Description: Dials the number in a memory location.
Note: This command does not work with parallel, USB, PCI, PCIe.
Syntax: AT$D<value>
Values:
0 Disables DTR dialing.
1 Dials the number in memory location 0 when DTR goes high.
Default: 0
Result Codes:
OK
ERROR

$EB
Asynchronous Word Length
Description: Enables 10-bit or 11-bit mode.
Note: This command does not work with parallel, USB, PCI, PCIe.
Syntax: AT$EB<value>
Values:
0 Enables 10-bit mode.
1 Enables 11-bit mode.
Default: 0

$FC
Quick Connect
Description: Sets quick connect.
Syntax: AT$FC<value>
Values:
0 No quick connect
1 Sets quick connect speed at 1200
2 Sets quick connect speed at 2400
Default: 0

$LB
Long Break
Description: Sets the length of a break sent to the DTE by the modem when received from the remote side.
Note: This command does not work with parallel, USB, PCI, PCIe.
Syntax: AT$LB=<value>
Values:
0-255 in 10 ms increments
30 (300 ms break)
Default: 30 (300 ms break)

$LL
Implements V.34 Handshake
Description: Implements V.34 handshake per leased line specification or per standard specification.
Syntax: AT$LL<value>
Values:
0 Implements V.34 handshake per standard specification.
1 Implements V.34 handshake per leased line specification.
Default: 0
Result:
OK if 0 or 1
ERROR if not 0 or 1
$MB
Online BPS Speed

Description: Selects speed in bits per second.

Syntax: `AT$MB<value>`

Default: 28,800

Values:
- 75: Selects CCITT V.23 mode
- 300: Selects 300 bps on-line
- 1200: Selects 1200 bps on-line
- 2400: Selects 2400 bps on-line
- 4800: Selects 4800 bps on-line
- 9600: Selects 9600 bps on-line
- 14400: Selects 14400 bps on-line
- 19200: Selects 19200 bps on-line
- 28800: Selects 28800 bps on-line
- 33600: Selects 33600 bps on-line

$RP
Ring Priority vs. AT Command Priority

Description: Sets the ring priority vs. the AT command priority.

Note: This command does not work with parallel, USB, PCI, PCIe.

Syntax: `AT$RP<value>`

Values:
- 0: The AT command will have priority over the ring. S1 will be reset to 0 if an AT command is received. This command is storable to memory.
- 1: The ring will have priority over the AT command. S1 will increment even if an AT command and ring are received together and the incoming call will be answered when S1 is equal to S0. Default.

Note: SocketModems do not detect ring cadence of TelTone telephone line simulators as a valid ring

Reports:
- `$RP?$`: Displays the current value (0 or 1)

$SB
Serial Port Baud Rate

Description: Sets the serial port baud rate.

Note: This command does not work with parallel, USB, PCI, PCIe.

Syntax: `AT$SB<value>`

Values:
- `$SB300`: Sets serial port to 300 bps
- `$SB1200`: Sets serial port to 1200 bps
- `$SB2400`: Sets serial port to 2400 bps
- `$SB4800`: Sets serial port to 4800 bps
- `$SB9600`: Sets serial port to 9600 bps
- `$SB19200`: Sets serial port to 19200 bps
- `$SB38400`: Sets serial port to 38400 bps
- `$SB57600`: Sets serial port to 57600 bps (Default)
- `$SB115200`: Sets serial port to 115200 bps
- `$SB230400`: Sets serial port to 230400 bps
+VDR Distinctive Ring Report

Description: Enables reporting of ring cadence information to the DTE and specifies the minimum ring cadence that will be reported.

The report format is one line per silence period and one line per ring period. The length of the silence period is in the form DROF=number in units of 100 ms<CR><LF>, and the length of the ring is in the form DRON=number in units of 100 ms<CR> <LF>. The modem may produce a Ring event code after the DRON message if enabled by the y parameter. The y parameter must be set to a value equal to or smaller than the expected ring cadence.

Syntax: AT+VDR=<value x>, <value y>

Values:
- **x = 0, 1** Distinctive Ring report control. Default = 0.
- **y = 0–255** Minimum ring interval in 100 ms units. Default = 0.
- **+VDR=0, N/A** Disables Distinctive Ring cadence reporting.
- **+VDR=1, 0** Enables Distinctive Ring cadence reporting. Other call progress result codes (including RING) are reported as normal.
- **+VDR=1, >0** Enables Distinctive Ring cadence reporting. The RING result code is reported after the falling edge of the ring pulse (i.e., after the DRON report).

Reports:
- **+VDR=?** Displays the allowed values.
- **+VDR?** Displays the current value.

#P

Set 11-bit Parity

Description: Sets 11-bit parity.

Note: This command does not work with parallel, USB, PCI, PCIe.

Syntax: AT#P<value>

Values:
- **0** No parity.
- **1** Odd parity.
- **2** Even parity.

Default: 2

#S

Enter Setup Password

Description: Verifies the Callback Security Password and allows the user to modify the Callback Security settings.

Note: This command does not work with parallel, USB, PCI, PCIe.

Syntax: AT#S<password>

Values: password (1–8 characters, case sensitive)

Default Password: MTSMODEM

Response:
- **OK** if password is correct
- **ERROR** if password is incorrect

#S=

Store Setup Password

Description: Stores a new remote configuration setup or Callback Security password, depending upon the model.

Syntax: AT#S=x

Values: x stands for password (1–8 characters, case sensitive)
%%%ATMTSMODEM Remote Configuration Escape Sequence
Description: Initiates remote configuration mode while online with remote modem. The remote configuration escape character (%) is defined in register S9.
Syntax: %%%ATMTSMODEM<CR>
Values: N/A

+VCID Caller ID Selection
Description: Enables Caller ID detection and configures the reporting and presentation of the Caller ID data that is detected after the first ring. The reported data includes the date and time of the call, the caller's name and number, and a message. Set S0=2.
Syntax: AT+VCID=<value>
Values:
 +VCID=0 Disables Caller ID
 +VCID=1 Enables Caller ID with formatted data
 +VCID=2 Enables Caller ID with unformatted data
 +VCID=? Displays the allowed values
 +VCID? Displays the current value
Default: 0
Callback Security Commands

Note: Callback Security Commands do not work with parallel, USB, PCI, PCIe.

#CBA Callback Attempts
Description: Sets the number of callback attempts that are allowed after passwords have been exchanged between modems.
Syntax: AT#CBA<value>
Values: 1–255
Default: 4

#CBD Callback Delay
Description: Sets the length of time (in seconds) that the modem waits before calling back the remote modem.
Syntax: AT#CBD<value>
Values: 0–255
Default: 15

#CBF? Callback Failed Attempts Display
Description: Requests the number of failed callback passwords since reset or power-up. This number can be stored to nonvolatile memory using the &W command.
Syntax: AT#CBF?
Values: N/A

#CBFR Callback Failed Attempts Reset
Description: Resets the number of failed callback passwords to 0. This does not reset the number stored in nonvolatile memory.
Syntax: AT#CBFR
Values: N/A

#CBI Local Callback Inactivity Timer
Description: Sets the time (in minutes) that the modem waits for a command before forcing the user to enter the setup password again.
Syntax: AT#CBI<value>
Values: 1–255
Default: 20

#CBN Store Callback Password
Description: Sets the callback security password for the y memory location. The password must have 6 to 10 characters, and cannot include the + or - characters.
Syntax: AT#CBN<y=x>
Values:
- y = 0–29
- x = password
Defaults: None
#CBP Callback Parity
Description: Sets parity for the callback security messages.
Syntax: AT#CBP<value>
Values:
- 0: No parity.
- 1: Odd parity.
- 2: Even parity.
Default: 0

#CBR Callback Security Reset
Description: Clears the password and phone number in the memory location.
Syntax: AT#CBR<value>
Values: 0–29
Default: None

#CBS Callback Enable/Disable
Description: Enables or disables callback.
Syntax: AT#CBS<value>
Values:
- 0: Disables callback security. Default.
- 1: Enables local and remote callback security.
- 2: Enables remote callback security only.
- 3: Disables callback security until local hang-up or reset.
S-Registers

Certain modem values, or parameters, are stored in memory locations called S-Registers. Use the S command to read or to alter the contents of S-Registers (see previous section).

<table>
<thead>
<tr>
<th>Register</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>1 ring</td>
<td>0, 1–255</td>
<td>1</td>
<td>Sets the number of rings until the modem answers. ATS0=0 disables auto answer completely.</td>
</tr>
<tr>
<td>S1</td>
<td>1 ring</td>
<td>0–255</td>
<td>0</td>
<td>Counts the rings that have occurred.</td>
</tr>
<tr>
<td>S2</td>
<td>decimal</td>
<td>0–127</td>
<td>43 (+)</td>
<td>Sets ASCII code for the escape sequence character.</td>
</tr>
<tr>
<td>S3</td>
<td>decimal</td>
<td>0–127</td>
<td>13 (^M)</td>
<td>Sets the ASCII code for the carriage return character.</td>
</tr>
<tr>
<td>S4</td>
<td>decimal</td>
<td>0–127</td>
<td>10 (^J)</td>
<td>Sets the ASCII code for the line feed character.</td>
</tr>
<tr>
<td>S5</td>
<td>decimal</td>
<td>0–32</td>
<td>8 (^H)</td>
<td>Sets the ASCII code for the backspace character.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33–127</td>
<td></td>
<td>Values greater than 32 disable backspace.</td>
</tr>
<tr>
<td>S6</td>
<td>seconds</td>
<td>2–65*</td>
<td>2*</td>
<td>Sets the time the modem waits after it goes off-hook before it begins to dial the telephone number.</td>
</tr>
<tr>
<td>S7</td>
<td>seconds</td>
<td>35–65*</td>
<td>50*</td>
<td>Sets the time the modem waits for a carrier signal before aborting a call. Also sets the wait for silence time for the @ dial modifier.</td>
</tr>
<tr>
<td>S8</td>
<td>seconds</td>
<td>0–65</td>
<td>2</td>
<td>Sets the length of a pause caused by a comma character in a dialing command.</td>
</tr>
<tr>
<td>S9</td>
<td>decimal</td>
<td>0, 1–127</td>
<td>37 (%)</td>
<td>Sets ASCII code for remote configuration escape character. S9=0 disables remote configuration.</td>
</tr>
<tr>
<td>S10</td>
<td>100 ms</td>
<td>1–254</td>
<td>20</td>
<td>Sets how long a carrier signal must be lost before the modem disconnects.</td>
</tr>
<tr>
<td>S11</td>
<td>1 ms</td>
<td>50–150*</td>
<td>95*</td>
<td>Sets spacing and duration of dialing tones.</td>
</tr>
<tr>
<td>S24</td>
<td>secs</td>
<td>0, 5–65</td>
<td>0</td>
<td>Sets the timer to control sleep mode. Default of 0 = Off.</td>
</tr>
<tr>
<td>S28</td>
<td>decimal</td>
<td>0, 1–255</td>
<td>1</td>
<td>0 disables, 1–255 enables V.34 modulation.</td>
</tr>
<tr>
<td>S30</td>
<td>1 minute</td>
<td>0, 1–255</td>
<td>0</td>
<td>Sets the length of time that the modem waits before disconnecting when no data is sent or received. A value of zero disables the timer. See also the \T command</td>
</tr>
<tr>
<td>S35</td>
<td>decimal</td>
<td>0–1</td>
<td>1</td>
<td>0 disables, 1 enables the V.25 calling tone, which allows remote data/fax/voice discrimination.</td>
</tr>
<tr>
<td>S36</td>
<td>decimal</td>
<td>0–7</td>
<td>7</td>
<td>Specifies the action to take in the event of a negotiation failure when error control is selected. (See S48.)</td>
</tr>
</tbody>
</table>
S37 decimal 0–19 0 Sets the maximum V.34 “upstream” speed at which the modem attempts to connect.
0 = maximum speed
1 = reserved
2 = 1200/75 bps
3 = 300 bps
4 = reserved
5 = 1200 bps
6 = 2400 bps
7 = 4800 bps
8 = 7200 bps
9 = 9600 bps
10 = 12000 bps
11 = 14400 bps
12 = 16800 bps
13 = 19200 bps
14 = 21600 bps
15 = 24000 bps
16 = 26400 bps
17 = 28800 bps
18 = 31200 bps
19 = 33600 bps

S38 decimal 0–23 1 Sets “downstream” data rate where V.90 provides rates of 28,000 to 56,000 bps in increments of 1,333 bps.
0 = V.90 disabled
1 = V.90 auto rate
2 = 28,000 bps
3 = 29,333 bps
4 = 30,666 bps
5 = 32,000 bps
6 = 33,333 bps
7 = 34,666 bps
8 = 36,000 bps
9 = 37,333 bps
10 = 38,666 bps
11 = 40,000 bps
12 = 41,333 bps
13 = 42,666 bps
14 = 44,000 bps
15 = 45,333 bps
16 = 46,666 bps
17 = 48,000 bps
18 = 49,333 bps
19 = 50,666 bps
20 = 52,000 bps
21 = 53,333 bps
22 = 54,666 bps
23 = 56,000 bps

Upstream data rates: Upstream V.90 data rates are 4800 to 33,600 bps in 2400 bps increments.

S43 decimal 0–1 1 For testing and debugging only. Enables/disables V.32bis start-up auto mode operation. 0 = disable; 1 = enable.
S48 decimal 7 or 128 7 Enables (7) or disables (128) LAPM negotiation. The following table lists the S36 and S48 configuration settings for certain types of connections.

<table>
<thead>
<tr>
<th>S48=7</th>
<th>S48=128</th>
</tr>
</thead>
<tbody>
<tr>
<td>S36=0, 2</td>
<td>LAPM or hang up</td>
</tr>
<tr>
<td>S36=1, 3</td>
<td>LAPM or async</td>
</tr>
<tr>
<td>S36=4, 6</td>
<td>LAPM, MNP, or hang up</td>
</tr>
<tr>
<td>S36=5, 7</td>
<td>LAPM, MNP, or async</td>
</tr>
</tbody>
</table>

S89 seconds 0, 5–65 0 Sets the length of time in the off-line command mode before the modem goes into standby mode or “sleep mode”. A value of zero prevents standby mode; a value of 1–4 sets the value to 5. Standby mode (sleep mode or low power mode) is controlled by S89. It programs the number of seconds of inactivity before the modem will go to sleep. The default value is 0. A value of 0 disables standby mode. The modem will wake on an incoming ring or an AT command.
Result Codes

In command mode your modem can send responses called **Result Codes** to your computer. Result codes are used by communications programs and can also appear on your monitor.

<table>
<thead>
<tr>
<th>Terse</th>
<th>Verbose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OK</td>
<td>Command executed</td>
</tr>
<tr>
<td>1</td>
<td>CONNECT</td>
<td>Modem connected to line</td>
</tr>
<tr>
<td>2</td>
<td>RING</td>
<td>Ring signal detected</td>
</tr>
<tr>
<td>3</td>
<td>NO CARRIER</td>
<td>Carrier signal lost or not detected</td>
</tr>
<tr>
<td>4</td>
<td>ERROR</td>
<td>Invalid command</td>
</tr>
<tr>
<td>5</td>
<td>CONNECT 1200</td>
<td>Connected at 1200 bps</td>
</tr>
<tr>
<td>6</td>
<td>NO DIALTONE</td>
<td>No dial tone detected</td>
</tr>
<tr>
<td>7</td>
<td>BUSY</td>
<td>Busy signal detected</td>
</tr>
<tr>
<td>8</td>
<td>NO ANSWER</td>
<td>No answer at remote end</td>
</tr>
<tr>
<td>9</td>
<td>CONNECT 75</td>
<td>Connected at 75 bps</td>
</tr>
<tr>
<td>10</td>
<td>CONNECT 2400</td>
<td>Connected at 2400 bps</td>
</tr>
<tr>
<td>11</td>
<td>CONNECT 4800</td>
<td>Connected at 4800 bps</td>
</tr>
<tr>
<td>12</td>
<td>CONNECT 9600</td>
<td>Connected at 9600 bps</td>
</tr>
<tr>
<td>13</td>
<td>CONNECT 14400</td>
<td>Connected at 14400 bps</td>
</tr>
<tr>
<td>14</td>
<td>CONNECT 19200</td>
<td>Connected at 19200 bps</td>
</tr>
<tr>
<td>18</td>
<td>CONNECT 57600</td>
<td>Connected at 57600 bps</td>
</tr>
<tr>
<td>24</td>
<td>CONNECT 7200</td>
<td>Connected at 7200 bps</td>
</tr>
<tr>
<td>25</td>
<td>CONNECT 12000</td>
<td>Connected at 12000 bps</td>
</tr>
<tr>
<td>26</td>
<td>CONNECT 16800</td>
<td>Connected at 16800 BPS</td>
</tr>
<tr>
<td>28</td>
<td>CONNECT 38400</td>
<td>Connected at 38400 bps</td>
</tr>
<tr>
<td>40</td>
<td>CONNECT 300</td>
<td>Connected at 300 bps</td>
</tr>
<tr>
<td>55</td>
<td>CONNECT 21600</td>
<td>Connected at 21600 bps</td>
</tr>
<tr>
<td>56</td>
<td>CONNECT 24000</td>
<td>Connected at 24000 bps</td>
</tr>
<tr>
<td>57</td>
<td>CONNECT 26400</td>
<td>Connected at 26400 bps</td>
</tr>
<tr>
<td>58</td>
<td>CONNECT 28800</td>
<td>Connected at 28800 bps</td>
</tr>
<tr>
<td>59</td>
<td>CONNECT 31200</td>
<td>Connected at 31200 bps</td>
</tr>
<tr>
<td>60</td>
<td>CONNECT 33600</td>
<td>Connected at 33600 bps</td>
</tr>
<tr>
<td>70</td>
<td>CONNECT 32000</td>
<td>Connected at 32000 bps</td>
</tr>
<tr>
<td>71</td>
<td>CONNECT 34000</td>
<td>Connected at 34000 bps</td>
</tr>
<tr>
<td>72</td>
<td>CONNECT 36000</td>
<td>Connected at 36000 bps</td>
</tr>
<tr>
<td>73</td>
<td>CONNECT 38000</td>
<td>Connected at 38000 bps</td>
</tr>
<tr>
<td>74</td>
<td>CONNECT 40000</td>
<td>Connected at 40000 bps</td>
</tr>
<tr>
<td>75</td>
<td>CONNECT 42000</td>
<td>Connected at 42000 bps</td>
</tr>
<tr>
<td>76</td>
<td>CONNECT 44000</td>
<td>Connected at 44000 bps</td>
</tr>
<tr>
<td>77</td>
<td>CONNECT 46000</td>
<td>Connected at 46000 bps</td>
</tr>
<tr>
<td>78</td>
<td>CONNECT 48000</td>
<td>Connected at 48000 bps</td>
</tr>
<tr>
<td>79</td>
<td>CONNECT 50000</td>
<td>Connected at 50000 bps</td>
</tr>
<tr>
<td>80</td>
<td>CONNECT 52000</td>
<td>Connected at 52000 bps</td>
</tr>
<tr>
<td>81</td>
<td>CONNECT 54000</td>
<td>Connected at 54000 bps</td>
</tr>
<tr>
<td>82</td>
<td>CONNECT 56000</td>
<td>Connected at 56000 bps</td>
</tr>
<tr>
<td>83</td>
<td>CONNECT 58000</td>
<td>Connected at 58000 bps</td>
</tr>
<tr>
<td>84</td>
<td>CONNECT 60000</td>
<td>Connected at 60000 bps</td>
</tr>
<tr>
<td>86</td>
<td>CONNECT 16800</td>
<td>Connected at 16800 bps</td>
</tr>
<tr>
<td>87</td>
<td>CONNECT 115200</td>
<td>Connected at 115200 bps</td>
</tr>
<tr>
<td>88</td>
<td>DELAYED</td>
<td>Delay is in effect for the dialed number</td>
</tr>
<tr>
<td>89</td>
<td>BLACKLISTED</td>
<td>Dialed number is blacklisted</td>
</tr>
<tr>
<td>90</td>
<td>BLACKLIST FULL</td>
<td>Blacklist is full</td>
</tr>
<tr>
<td>91</td>
<td>CONNECT 230400</td>
<td>Connected at 230400 bps</td>
</tr>
<tr>
<td>100</td>
<td>CONNECT 28000</td>
<td>Connected at 28000 bps</td>
</tr>
<tr>
<td>101</td>
<td>CONNECT 29333</td>
<td>Connected at 29333 bps</td>
</tr>
<tr>
<td>102</td>
<td>CONNECT 30666</td>
<td>Connected at 30666 bps</td>
</tr>
<tr>
<td>CONNECT</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>33333</td>
<td>Connected at 33333 bps</td>
<td></td>
</tr>
<tr>
<td>34666</td>
<td>Connected at 34666 bps</td>
<td></td>
</tr>
<tr>
<td>37333</td>
<td>Connected at 37333 bps</td>
<td></td>
</tr>
<tr>
<td>38666</td>
<td>Connected at 38666 bps</td>
<td></td>
</tr>
<tr>
<td>41333</td>
<td>Connected at 41333 bps</td>
<td></td>
</tr>
<tr>
<td>42666</td>
<td>Connected at 42666 bps</td>
<td></td>
</tr>
<tr>
<td>45333</td>
<td>Connected at 45333 bps</td>
<td></td>
</tr>
<tr>
<td>46666</td>
<td>Connected at 46666 bps</td>
<td></td>
</tr>
<tr>
<td>49333</td>
<td>Connected at 49333 bps</td>
<td></td>
</tr>
<tr>
<td>50666</td>
<td>Connected at 50666 bps</td>
<td></td>
</tr>
<tr>
<td>53333</td>
<td>Connected at 53333 bps</td>
<td></td>
</tr>
<tr>
<td>54666</td>
<td>Connected at 54666 bps</td>
<td></td>
</tr>
<tr>
<td>25333</td>
<td>Connected at 25333 bps</td>
<td></td>
</tr>
<tr>
<td>26666</td>
<td>Connected at 26666 bps</td>
<td></td>
</tr>
</tbody>
</table>

When the extended result code configuration is enabled, one of the following codes is appended to the result code depending on the type of error control connection:

- **V42bis** – V.42 error control (LAP-M) and V.42bis data compression
- **V42** – V.42 error control (LAP-M) only
- **MNP5** – MNP 4 error control and MNP 5 data compression
- **MNP4** – MNP 4 error control only
- **NoEC** – No error control protocol.
Chapter 4 – Voice Commands

Introduction

Important Note:
Some Voice commands do not apply to the SMI build.

This chapter describes $+V$ command support. The $+V$ Command standard IS-101 Voice Control Interim Standard for Asynchronous DCE (prepared by the TIA Technical Subcommittee TR29.2 on Facsimile Digital Interface) defines the commands that a PC user may issue to configure and control a voice/fax/data modem and the responses (result codes) that the voice/fax/data modem may issue in response to those commands.

The $+V$ commands and responses provide control of the following services:

- Recording and playback of digitized voice.
- Generation and detection of DTMF and other tones.
- Switching between voice, fax, and data modes.
- Control-related functions.

The Voice mode has three states, which correspond to the direction of voice data flow:

- Voice command state (event reports only; no data transfers).
- Voice transmit state (digitized, half-duplex voice data transfers from PC to modem).
- Voice receive state, (digitized, half-duplex voice data transfers from modem to PC).

The modem supports three levels of voice service: Service Levels A, B, and C. Service Level A provides the lowest level of services. Service level A performs operations and detects events as follows: Voice transmit, Voice receive, and DTMF generation and Single tone generation. The following events (Result Codes) are reported: 3, 4, 5, 6, 9, 10, 18, 19, 23, 25.

Service Level B provides an optionally greater amount of services, providing DTMF and facsimile calling tone detection during voice transmits in addition to Service Level A. Service Level B provides event-reporting similar to Service Level A, but with added event reporting states (e.g., fax calling in transmit state in addition to reporting in command state).

Service Level C provides the highest service level with the addition of facsimile calling tone and Busy detection during receives, Dial Tone detection, and double-tone detection. An example of event detection in a Service Level C modem is shown below:

```
AT+VEM=?
"C"
0A000100
0E601800
1A803840
OK
```
Chapter 4 – Voice Commands

Voice S:Register Summary

Voice mode S:Register changes are outlined below.

<table>
<thead>
<tr>
<th>S:Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>Automatic answer is disallowed in Voice mode.</td>
</tr>
<tr>
<td>S7</td>
<td>Wait for Carrier After Dial. Default is 60 seconds. In Voice mode, S7 contains the maximum amount of time that the modem will wait during Call Origination, all the time detecting for ring backs, before assuming that the remote station will not go off hook.</td>
</tr>
<tr>
<td>S10</td>
<td>Automatic disconnect is disallowed in Voice mode.</td>
</tr>
</tbody>
</table>

Voice Commands

The +V Voice enhancements are implemented with AT+V (for Voice) commands, as well as changes to several existing commands.

In general, the modem does not accept Data mode (+FCLASS=0) commands or Fax mode (+FCLASS=1, 1.0, 2, 2.0, 2.1) commands when in Voice mode (+FCLASS=8).

Commands That Change for Voice Mode Support

<table>
<thead>
<tr>
<th>Command:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Causes the modem to Dial assuming +VLS=2 if +VLS=0 when the ATD command was entered.</td>
</tr>
<tr>
<td>H</td>
<td>Values greater than 0 disallowed in Voice mode.</td>
</tr>
<tr>
<td>M</td>
<td>Disallowed in Voice mode.</td>
</tr>
<tr>
<td>O</td>
<td>Disallowed in Voice mode.</td>
</tr>
<tr>
<td>Q</td>
<td>Disallowed in Voice mode.</td>
</tr>
<tr>
<td>X</td>
<td>Disallowed in Voice mode.</td>
</tr>
<tr>
<td>Z</td>
<td>Reset modem.</td>
</tr>
<tr>
<td>&D</td>
<td>&D1 is disallowed in Voice mode.</td>
</tr>
<tr>
<td>+FCLASS=8</td>
<td>Places the modem in Voice mode.</td>
</tr>
<tr>
<td>+FCLASS=</td>
<td>New values are added for Voice mode.</td>
</tr>
<tr>
<td>+FCLASS=?</td>
<td>New values are added for Voice mode.</td>
</tr>
</tbody>
</table>
Voice +V Commands Detail

+FCCLASS=8 Select Voice Mode
Description: The +FCCLASS=8 command selects voice mode.

+VNH Automatic Hang-Up Control
Description: Enables or disables automatic hang-up.
Syntax: AT+VNH=<hook>
Values: <hook>
 +VNH=0 Enables automatic hang-ups as in non-Voice modes (such as hanging up the phone when the modem does not detect a data carrier within a given time interval).
 +VNH=1 Disables automatic hang-ups in non-Voice modes.
 +VNH=2 Disables automatic hang-ups in non-Voice modes. The modem performs only a "logical" hang up (i.e., returns the OK result code).
Reports: +VNH? Displays current or selected values.
 +VNH=? Displays list of supported values.
Result Codes: OK if command accepted.
 ERROR if parameter is out of range.

+VIP Initialize Voice Parameters
Description: The +VIP command causes the modem to initialize all Voice parameters to the factory default settings.
Syntax: AT+VIP
Values: None

+VRX Enter Voice Receive State
Description: Start voice reception.
Syntax: AT+VRX
Values: None
Result Codes: OK
 ERROR if not in voice mode.
+VTS

Send Voice Tone(s)

Description: This command causes the modem to send DTMF digit or hookflash tones with the duration specified by +VTD, to send DTMF digit or hookflash tone duration specified by this command, or to send single or dual tone frequencies with duration specified with this command.

Syntax:

```
AT+VTS=<string>
```

Values:

- `<string>`
 - The tone generation string consists of elements in a list where each element is separated by commas. Each element can be:
 1. A single character which the modem interprets as a DTMF digit (0–9, #, *, and A–D) or hookflash (!), with a duration given by the +VTD command.
 2. A 3-element string enclosed in square brackets "[freq1,freq2,dur]", which the modem interprets as a general dual tone and duration (dur) selection.
 3. A 2-element string enclosed in curly braces "{X,dur}", which the modem interprets as a DTMF digit ((0–9, #, *, and A–D) or hookflash (!), with a duration (dur) different than that given by the +VTD command.

 Missing parameters are assumed to be the default value. Unspecified values always default to 0 for frequencies, DTMF * for DTMF tones, and +VTD for duration. The omission of commas (and associated subparameters) is valid.

Result Codes:

- OK if the PC accepts the command.
- ERROR if the modem encountered an error in parsing the subparameter or if the selected frequency is out of range.

Example:

Using the +VTS command for tone generation without using any null elements:

```
AT=VTS=1,2,[1000,1300,50],{*,6},{800,1300,50},9
```

The above string will perform as follows:

1. Play DTMF 1 with a duration given by the +VTD command.
2. Play DTMF 2 with a duration given by the +VTD command.
3. Play tone pair at 1000 Hz and 1300 Hz with a duration of 500 ms.
4. Play DTMF * with a duration of 60 ms.
5. Play tone pair at 800 Hz and 1300 Hz with a duration of 500 ms.
6. Play DTMF 9 with a duration given by the +VTD command.

Reports:

- +VTS=? Reports Frequency Support. Reports the current frequency range in the form `<freq1>,<freq2>,<dur>`, where `<freq1>` is the first frequency range, `<freq2>` is the second frequency range, and `<dur>` is the duration range for the square brackets and curly braces constructs. The units are in 0.01 seconds. The range of valid `<dur>` values is that of the +VTD command.

 Example: In the lines below, the modem responds to the +VTS=? command by reporting that it supports two frequencies, both in the range of 200-3300 Hz, and supports a duration range from 0 to 5 seconds.

```
AT+VTS=?(200-3300), (200-3300), (0-500)
```

OK
+VTX
Start Voice Transmission Process
Description: Starts the voice transmission process. The PC sends the data in the format of the previously entered +VSM command, using the flow control method selected by the +FLO command. The voice data is buffered to withstand gaps of missing data from the PC. If the modem does not have any current voice data, the modem sends silence over to the analog destination until the PC provides more voice data. The modem returns the OK result code and returns to Command mode after the modem has completely transmitted its buffer contents. The Inactivity Timer can be used to terminate the transmit data state, after which the modem returns to Command mode.

Syntax:
AT+VTX

Result Codes:
OK on completion of transmission.
CONNECT if the modem accepts the command.
ERROR if the modem is not connected to at least one off-hook Telco line or one non-Telco device.

+VGR
Voice Gain for Received Voice Samples
Description: Sets the gain for the received voice samples. Receive gain values larger than 128 indicate a larger gain than nominal, and values smaller than 128 indicate a gain smaller than nominal. The modem may limit the receive gain to a narrower range, such as from 120 to 136, or from 120 to 128. The value 0 is reserved for modem automatic gain control (AGC).

Syntax:
+VGR=<gain>

Values:
0-255
Selects automatic gain control. Default is 128

Result Codes:
OK if <gain>=0
ERROR if <gain> is not 0 or if not in voice mode.

Reports:
+VGR?
Displays current or selected values.
+VGR=?
Displays list of valid values supported.

+VGT
Set the Volume for Transmitted Voice Samples
Description: Sets the volume control, either by attenuating or amplifying the signal for the transmitted voice samples.
Note: The modem will limit the transmit level over the Telco lines, regardless of the current +VGT setting, to that permitted by CFR FCC Rules Part 68 – Subpart D.

Syntax:
+VGT=<level>

Values:
0-255
Selects volume for transmitted voice samples. Default is 128

Values larger than 128 indicate a larger gain than nominal, and values smaller than 128 indicate a gain smaller than nominal. The modem may limit the receive gain to a narrower range, such as from 120 to 136, or from 120 to 128. The value 0 is reserved for modem automatic volume control (AVC).

Result Codes:
OK if the modem accepts the command
ERROR if the parameter is out of range.

Reports:
+VGT?
Displays current or selected values.
+VGT=?
Displays list of valid values supported.
Set DTE/DCE Inactivity Timer

Description:
Sets the modem's initial value for the PC/Modem Inactivity Timer. The units are in 1.0 seconds. The PC can disable the Inactivity Timer by using a value of 0 (+VIT=0).

The Inactivity Timer serves to ensure that the PC does not leave the modem in a state where it is not accessible by voice-unaware software. The Inactivity Timer is activated when the PC selects the voice fixed-rate. The timer expires if the flow of data from the PC to the modem stops (in both Voice Command mode and Data mode) for a specified amount of time.

When this timer expires, the modem switches to Data mode with autobauding. By switching to autobauding (and Data mode), the PC is allowed voice-unaware software to recover control of the modem in the event of catastrophic failure that does not result in a modem power down. It is recommended that the PC software leave the modem in autobauding (and Data mode), and use the Inactivity Timer only as needed. Leaving the modem in autobauding is an extra measure to prevent confusion from voice-unaware software accessing the modem in Voice mode at a fixed PC/modem interface rate. You can use the H command to switch to autobauding and Data mode automatically. In Voice mode, the modem does not allow the auto answer feature, since this feature does not allow the PC to set the modem in Voice mode before answering the phone.

Syntax:
AT+VIT=<timer>

Values:
- `<timer>`
 - 0 Disables the timer. Default.
 - 0-255 Timer set in units of 1.0 seconds.

Result Codes:
- OK if `<timer>` = 0-255.
- ERROR if the parameter is out of range or if not in voice mode.

Reports:
- +VIT? Displays current or selected values.
- +VIT=? Displays list of valid values supported.
+VLS

Select Analog Source/Destination

Description: Selects one or more source/destination devices for the analog data to be transmitted. The parameter `<label>` identifies each of the supported analog source/destination hardware devices. Codes, called "primitives", are provided to describe which voice I/O device(s) are components in a possible hardware configuration. The codes are grouped to help define and label 16 common hardware configurations. Each code, except "L" and "T" is followed by an ASCII 0 code (20 hex). Two codes can be concatenated to define a possible analog source/destination hardware configuration.

Syntax:

```
AT+VLS=<label>
```

Values: A decimal number corresponding to the selected analog source/destination hardware configuration:

<table>
<thead>
<tr>
<th><code><label></code></th>
<th>Code(s)*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
<td>Modem on-hook. Local phone connected to Telco. Default.</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>Modem off-hook, and connected to Telco. Local phone provided with power to detect hook condition.</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>Modem off-hook. Local phone connected to modem.</td>
</tr>
<tr>
<td>3</td>
<td>LT</td>
<td>Modem off-hook. Local phone connected to Telco. Modem connected to Telco.</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>Internal speaker connected to the modem. Modem is on-hook. Local phone connected to Telco.</td>
</tr>
<tr>
<td>5</td>
<td>ST</td>
<td>Internal speaker connected to Telco. Modem is off-hook. Modem connected to Telco. Local phone provided with power to detect hook condition.</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>Internal microphone connected to modem. Modem is on-hook. Local phone connected to Telco.</td>
</tr>
<tr>
<td>7</td>
<td>MST</td>
<td>Internal microphone and internal speaker connected to Telco. Squelching active. Modem is off-hook, and connected to Telco. Local phone provided with power to detect hook condition.</td>
</tr>
</tbody>
</table>

Codes:

- **L** Local Phone
- **T** Telephone Line
- **M** Internal Microphone
- **M1** External Microphone
- **S** Internal Speaker
- **S1** External Speaker
- **H** External Microphone and Microphone combination (handset or headset)

Result Codes:

- **OK** if command accepted.
- **ERROR** if the `<label>` parameter is out of range or if the modem cannot service the `<label>` parameter requested.

Reports:

- **+VLS?** Displays current or selected values.
- **+VLS=?** +VLS=? displays the modem's current source and destination device information for the analog data to be transmitted. Refer to the +VLS=<label> command for label code and description information. Note that the +VEM command contains more information about event reporting.

Example: Shows the modem reporting that it supports only a Telco line at Service Level C:

```
AT+VLS=0,"",0A0001000,0E601800,1A803840
```

Response: `<label>,<devices>,transmit event>,<receive event>,<idle event>` where

- `<label>` Identifies the modem analog source/destination hardware configuration
- `<devices>` a <string constant> made up of Primitives.
- `<xxxx event>` transmit event>,<receive event>, and <idle event> subparameters are the DCE event reporting capabilities for the Voice Transmit State, Voice Receive State, and the Voice Command State respectively. Each of the event reporting subparameters is a hex number that represents an event bit field.
+VRA
Ringback Goes Away Timer
Description: Sets the length of time the modem will wait between ringbacks during a call origination before the modem can assume that the remote device has gone off-hook.
Syntax: AT+VRA=<interval>
Values: <interval> A decimal number (0–255) specifying the silence interval time in units of 0.10 seconds between the end of one ring interval and the start of the next ring interval. A value of 0 forces the modem to report the OK result code and immediately after the first ringback. The range is 0.1 to 25.5 seconds for <interval>=1 to 255.
Default: 50
Result Codes: OK if the <interval> is 0-255. ERROR if the <interval> parameter entered is out of range or if not in voice mode.
Reports: +VRA? Displays current or selected values. +VLS=? Displays a list of the supported values.

+VRN
Ringback Timer
Description: Sets the length of time that the modem will wait for ringback. If the modem does not detect a ringback within the time period <interval>, the modem assumes that the remote device has going off-hook and returns the OK result code. The modem only uses this command in call origination transactions. A +VRN setting greater than the S-Register S7 setting means that only the S7 timer is in effect.
Syntax: AT+VRN=<interval>
Values: <interval> A decimal number specifying the time period in units of 1.0 seconds that the modem will wait for ringback during a call origination. A value of 0 forces the modem to report the OK result code immediately after dialing. The range is 1 to 25 seconds for <interval>=1 to 25.
Values: 0–10 (in 1.0 second increments)
Default: 10 (10 seconds)
Result Codes: OK if <interval> = 0-25. ERROR if the <interval> parameter entered is out of range or the modem is not in voice mode.
Reports: +VRN? Displays current or selected values. +VLS=? Displays a list of the supported values.
+VSD

Silence Detection Sensitivity

Sets the silence detection sensitivity and the required period of silence before the modem reports silence detected at the end of a voice receive, either with the Presumed End of Message (Quiet) or Presumed Hang Up (Silence) event reports. The table below outlines the possible combinations of the +VSD and +VSM commands using the <sds> parameter. An <sdi> parameter value of 0 means that long-term silence detection is disabled. (Note that long-term silence detection refers to the use of this function to detect the end of a voice receive (i.e., the user stops talking).

The parameter <sds> is used by the PC to select greater amounts of modem silence detection activity; larger values imply that the PC wants the modem to treat noisier conditions as silence. The value entered for <sds> has no actual unit of measure. The modem may limit silence detection sensitivity to a more narrow range (e.g., from 120 to 136). A setting of 0 has no meaning.

The parameter <sdi> sets the required period of silence before the modem can report silence detected either with the Presumed End of Message (Quiet) or Presumed Hang Up (Silence) event reports. A value of 0 disables modem silence detection, in which case the modem will not report the Presumed End of Message (Quiet) or Presumed Hang Up (Silence) event reports.

Syntax:

AT+VSD=<sds>,<sdi>

Values:

<sds> A decimal number corresponding to the selected parameter:

0 Use +VSM silence compression setting and algorithm for long-term silence detection if +VSM is in use

OR

Use default long-term setting silence detection level and algorithm if +VSM is not in use.

127 Sets less aggressive long-term silence detection independent of presence or use of silence compression.

128 Sets nominal long-term silence detection independent of presence or use of silence compression.

129 Sets more aggressive long-term detection independent of presence or use of silence compression.

<sdi> A decimal number specifying the required period of silence in units of 0.1 seconds, before the modem can report silence detected at the end of a voice receive either with the Presumed End of Message (QUIN) or Presumed Hang up (SILENCE) event reports. A value of 0 disables the modem silence detection. The range is 0.1 to 25.5 seconds for <sdi>=1 to 255.

Result Codes:

OK if values are valid.

ERROR if one or more of the following apply: 1) the <sds> or <sdi> parameter entered is out of range, or 2) either of the two parameters is missing from the command string. If an error occurs, modem retains the previous <sds> and <sdi> parameter values.

Reports:

+VSD? Displays current or selected values.

+VSD=? Displays a list of the supported values.
AT+VSM
Select Voice Compression Method

Description: Sets the modem to a specified voice compression method, silence compression sensitivity, and voice sampling rate. The modem can maintain a different event detection capability for each compression method. For example, you may want to record your welcome message with the lowest amount of silence removal, with the goal of reducing distortion. For other messages you may want a more assertive silence removal, to limit disk space used for recording purposes.

Syntax:
AT+VSM=<cml>,<vsr>

Values:
- **<cml>** A decimal number identifying the compression method. The valid values are 128, 129, 130, 131, 132. Default is 129.
- **<vsr>** A range of values containing the supported range of for voice samples per second of the analog signal (8000).

Response:
Response to AT+VSM=?.
- 128,"8-BIT LINEAR",(7200,8000,11025)
- 129,"16-BIT LINEAR",(7200,8000,11025)
- 130,"8-BIT ALAW",(8000)
- 131,"8-BIT ULAW",(8000)
- 132,"IMA ADPCM",(7200,8000,11025)

Result Codes:
- OK if the modem accepts the command.
- ERROR if one or more of the following apply: 1) the any parameter entered is out of range, or 2) any of the four parameters are missing from the command string. If an error occurs, the modem retains the previous <sds> and <sdi> parameter values.

Reports:
- **+VSM?** Displays current or selected values.
 - Reports <cml>,<vsr>
 - Example: 1,8000,0,0.
 - The default is 129,"16-BIT LINEAR",8000
- **+VSM=?** The +VSM=? command reports several compression method identifiers in one of two ways: either 1) a compression method (for PCM coding) from the table below, or 2) a cooperative identifier (non-PCM coding) used with other manufacturer’s equipment. Reports the following:
 - **<cml>** See above
 - **<cmd>** An alphanumeric string describing the compression method (UNSIGNED PCM, IMA ADPCM, 2-Bit ADPCM, or 4-Bit ADPCM)
 - **<bps>** A decimal number defining the average number of bits in the compressed sample not including silence compression (2, 4, or 8)
 - **<tm>** A decimal number (0) reporting the time interval in units of 0.1 seconds between timing marks. 0 reports timing marks are not supported.
 - **<vsr>** See above. A report of 0 indicates not supported.

Example: The following shows an inquiry about the modem support of compression and other data. In this example, the modem reports that it supports two compression methods.

AT+VSM=?.
128,"SIGNED PCM",12,0,(7200-8000,11025)
132,"ADPCM/AQ",2,40,(7200)
+VTD
Beep Tone Duration Timer (DTMF/Tone Generation Duration)

Description: Sets the default DTMF/tone generation duration used with the +VTS command. This command does not affect the ATD command settings. The <dur> parameter range is given by the +VTD=? command, in units of 0.01 seconds. A setting of +VTD=0 specifies a manufacturer-specific time interval.

Syntax: AT+VTD=<dur>.

Values:
- <dur> A decimal number specifying the default DTMF/tone generation duration in units of 0.01 seconds.
 - A value of 0 specifies the value entered by the S11 parameter (50 to 255 ms). The range is 0.01 to 2.55 seconds for <dur> 1 to 255. Default = 100.

Result Codes: OK if <dur> = 0-255.

ERROR if the parameter is out of range or if not in Voice mode.

Reports:
- +VTD? Displays current or selected values.
- +VTD=? Displays a list of the supported values.

+VDR
Distinctive Ring (Ring Cadence Reporting)

Description: Enables or disables reporting of the ring cadence information and controls the timing of the Ring event code report if ring cadence reporting is enabled. This report format is one line per silence period, and one line per ring period. The length of the silence period is in the form DROF=<number in units of 0.1 seconds><CR><LF>, and the length of the ring in the form DRON=<number in units of 0.1 seconds>. The <LR> character is optional. The modem may produce a Ring event code after the DRON message if enabled by the <report> parameter. The <report> parameter should be set to a value larger than the expected off-times within a single pattern so that the Ring event reports are issued only during the off-times between the complex patterns.

Syntax: AT+VDR=<enable>,<report>

Values:
- <enable> A decimal number corresponding to the selected option:
 - 0 The modem will not generate ring cadence reports. Other call progress event codes (including Ring) are reported as normal.
 - 1 The modem will report ring cadence information as specified for the <report> subparameter. Default.

- <report> A decimal number specifying ring cadence information report when enabled by the <enable> subparameter.
 - 0 The modem will produce only DROF and DRON messages. The modem will not produce a RING event codes. The modem will report other call progress event codes as normal.
 - Other The modem will produce only DROF and DRON messages. The modem will produce a RING event code after <report>/10 seconds after the falling edge of the ring pulse (i.e., after the DRON report). The modem will report other call progress event codes as normal.

Example: The lines below shows a cadence with an off time of 4.0 seconds, an on time of 0.8 seconds, an off time of 0.4 seconds, and an on time of 0.8 seconds. The RING result code is displayed 0.5 seconds after the last DRON message. The command to enable this sample sequence is +VDR-1,5, as shown below:

```
<DLE><X>
DROF=40
DRON=8
DROF=4
DRON=8
RING
<DLE><.>
<DLE><X>
DROF=40
```
DRON=8
DROF=4
DRON=8
RING
<DLE><.>

Reports:
+VDR? Displays current or selected values.
+VDR=? Displays a list of the supported values.

Result Codes:
OK if the modem accepts the command
ERROR if the parameter is out of range or not in voice mode.

+VEM Event Reporting and Masking
Description: The +VEM= command can be used to disable an event report, regardless of the modem's state, or of the modem's analog signal source or destination's configuration. The <mask> parameter is a bit field where bit 0 is the most significant bit of an eight-digit hex number. The PC setting of a bit enables event reporting for that event. Bit 0 in the bit field corresponds to Event number 0 (Caller ID). This mask effects the reporting of the specified event in all modes (Fax, On-line data, AT Command and Voice modes). Events cannot be masked by modes; however, the PC can change the mask each time it changes modes. The modem-detectable events depend on the compression method selected by the +VSM command. The +VEM command may effect the reporting capabilities of other +V commands. The detection of an event may not be possible at all times and for all compression methods. Use the +VLS=? command to ask which times and for which compression methods (as well as for which analog source/destination selections) events can be detected and reported when not disabled by the +VEM command.

Syntax: AT+VEM=<mask>
Values: bits 0–32 on (i.e., FFFFFFFF8)

Example: In the lines below, only the RING and the DTMF event detection reporting:
AT+VEM=18000000
OK

Reports:
+VEM? Displays current or selected values.
+VEM=? The +VEM=? command returns four lines of modem event reporting/masking capability information, followed by the OK result code. The first line indicates the Service Level supported by the modem (though the modem may support more than the capabilities displayed). The next three lines report the capability of the Voice Transmit mode, Voice Receive mode, and the Voice Command mode, respectively. Each line is a hex value that is the bit-wise OR function across all of the supported compression methods and across all analog source/destination hardware configurations (i.e., all +VLS settings) for the specified mode. Note that the displayed hex values are not connected to the <mask> parameter in the +VEM and +VEM? commands.

Result Codes:
OK if the modem accepts this command
ERROR if the bit field contains illegal characters.
Interface Configuration Commands

The commands in this section are used to define the interface between the PC and the modem.

+VPP
Enable or Disable Voice Mode Packet Protocol

Description: The +VPP command enables and disables the Packet protocol for Voice mode operation, and handles the new unsolicited Voice mode result codes. The Packet protocol is used to detect lost octets on the modem-to-PC serial link, and to recover the lost octets by requesting retransmission. The Packet protocol assumes that the data corruption is not a problem on the communications link, the last octet sent will never be lost due to data overrun (i.e., that the newer octets always overwrite previous octets in the communications input buffer, a common UART design feature). Several PC processes can cause serial input channel neglect for longer than the Protocol time between asynchronous characters (typically less than 521 microseconds), and data loss can occur. If a character is lost in the received data, the playback of the voice data may be impaired or lost. If a character is lost in the final result code, the connection may fail. The Packet protocol permits recovery from such data loss.

Syntax:
AT+VPP=<enable>

Values:
0, 1; (2–255 reserved for future standards)

Result Codes:
OK if the modem accepts the command.
ERROR if the <enable> value is out of range.

+VPR
Select DTE/DCE Interface Rate (Turn Off Autobaud)

Description: The +VPR command causes the modem to select between various fixed modem-to-PC interface rates and autobauding. The selected fixed interface rate stays in effect until the modem selects another interface rate or autobauding, or until the modem returns to autobauding on the expiration of the Inactivity Timer. The newly selected rate takes effect after the modem returns the OK result code.

Syntax:
AT+VPR=<rate>

Values:
+VPR=0 select autobauding
+VPR=1 select 2400 bps
+VPR=2 select 4800 bps
+VPR=3 select 7200 bps
+VPR=4 select 9600 bps
+VPR=5 select 12000 bps
+VPR=6 select 14400 bps
+VPR=7 select 16800 bps
+VPR=8 select 19200 bps

If the modem claims support for autobauding (+VPR=0), it means that the modem can accept AT commands at 2400 bps at all times while in Voice command mode and with +VPR=0.

Result Codes:
OK if the modem accepts the command.
ERROR if the <rate> value is out of range.
Flow Control

XON/XOFF flow control is used by the modem to match the PC-to-modem data rate to the line-signaling rate, as well as to the requirements of analog conversion of the voice signals and voice data. In-band, uni-directional XON/XOFF flow control is mandatory. RTS/CTS (V.24 circuits 106 and 133) flow control is optional per the IS-101 standard.

Voice Mode Result Codes

In Voice mode, the modem can detect and report DTMF, detect call progress tone and cadence events, evaluate voice quality, and can monitor Telco-related activities. Events can be reported as a single character (Simple or "Terse" reporting), a full-text message (Message or "Verbose" reporting), or as a repeating pattern (Pattern reporting).

<table>
<thead>
<tr>
<th>Terse</th>
<th>Verbose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Caller ID Report</td>
</tr>
<tr>
<td>1</td>
<td>DID Report</td>
</tr>
<tr>
<td>2</td>
<td>Distinctive Ringing</td>
</tr>
<tr>
<td>3</td>
<td>RING</td>
</tr>
<tr>
<td>4</td>
<td>DTMF Received</td>
</tr>
<tr>
<td>5</td>
<td>Receive Buffer Overrun</td>
</tr>
<tr>
<td>6</td>
<td>Facsimile Calling (e.g., 1100 Hz)</td>
</tr>
<tr>
<td>7</td>
<td>Data Calling (e.g., 1300 Hz)</td>
</tr>
<tr>
<td>8</td>
<td>Local Phone On/Off Hook</td>
</tr>
<tr>
<td>9</td>
<td>Presumed Hang Up (SILENCE) Time-out</td>
</tr>
<tr>
<td>10</td>
<td>Presumed End of Message (QUIET) Time-out</td>
</tr>
<tr>
<td>11</td>
<td>SIT Tone (CO Standard Information Tones, sent to pay phones)</td>
</tr>
<tr>
<td>12</td>
<td>Bong Tone (Calling Card Tone)</td>
</tr>
<tr>
<td>13</td>
<td>Loop Current Interruption</td>
</tr>
<tr>
<td>14</td>
<td>Loop Current Polarity Reversal</td>
</tr>
<tr>
<td>15*</td>
<td>Call Waiting Beep/Interrupt*</td>
</tr>
<tr>
<td>16*</td>
<td>Distinctive Call Waiting*</td>
</tr>
<tr>
<td>17*</td>
<td>TDD Detected (e.g., 1400/1800 Hz)*</td>
</tr>
<tr>
<td>18</td>
<td>Ring Back/Remote Ring</td>
</tr>
<tr>
<td>19</td>
<td>BUSY</td>
</tr>
<tr>
<td>20</td>
<td>DIALTONE</td>
</tr>
<tr>
<td>21</td>
<td>Reorder/Fast Busy</td>
</tr>
<tr>
<td>22</td>
<td>V.21 Channel 2 7E Flags</td>
</tr>
<tr>
<td>23</td>
<td>Transmit Buffer Under Run</td>
</tr>
<tr>
<td>24</td>
<td>Extension Phone On/Off Hook</td>
</tr>
<tr>
<td>25</td>
<td>Facsimile or Data Answer (e.g., 2100 Hz)</td>
</tr>
<tr>
<td>26</td>
<td>Data Answer (e.g., 2225 Hz)</td>
</tr>
<tr>
<td>27</td>
<td>Voice Detect</td>
</tr>
<tr>
<td>28</td>
<td>Call Waiting Plus Caller ID</td>
</tr>
<tr>
<td>29</td>
<td>Stuttered Dial Tone</td>
</tr>
<tr>
<td>30</td>
<td>Invalid Voice Data Format</td>
</tr>
<tr>
<td>31</td>
<td>Lost Data Detected Event</td>
</tr>
<tr>
<td>32</td>
<td>Facsimile Answer</td>
</tr>
<tr>
<td>33-63</td>
<td>Reserved for future standard</td>
</tr>
<tr>
<td>above 63</td>
<td>Manufacturer specific</td>
</tr>
</tbody>
</table>

* Further study required for final specification.
The TIA/EIA-602 CONNECT result code is disallowed in voice mode.
Unsolicited Voice Mode Result Codes

The form of the unsolicited result codes for voice mode is different from standard modem Command mode result codes. The +V specification refers to these voice mode result codes as "event detection reports". Event detection reports are provided in simple report format when one character is enough to report an event, such as RING. A complex report format is used when one character is not enough to report an event; generally, all multi-character responses. Complex event reports are in the format <tag>=<data><cr>, where <tag> is the data type, = is the ASCII = sign, <data> is a specific data instance, and <cr> is ASCII 13 decimal.

Valid Complex Event Report Tags

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>Caller ID Tag in the form TIME=HHMM, where HH is the hour (00-23) and MM is the minute (00–59). All numbers are in ASCII and numbers less than 10 have a leading 0.</td>
</tr>
<tr>
<td>DATE</td>
<td>The current date in the format MMDD (where MM is the month 0–12 and DD is the day 01–31). All numbers are in ASCII and numbers less than 10 have a leading 0.</td>
</tr>
<tr>
<td>NMBR</td>
<td>The telephone number of the caller, in the format NMBR=<Number> or P or O (ASCII 4F hex). The P indicates that the calling number information is not available since the originating caller has requested Private service. The O indicates that the calling number information is not available since the caller is outside of the area code.</td>
</tr>
<tr>
<td>NAME</td>
<td>The caller's name in the format NAME=<Listing Name>.</td>
</tr>
<tr>
<td>MESG</td>
<td>Indicates a data item not listed above in Multiple Message Format: MESG=<Data Tag><Length of Message><Data><Checksum> in printable ASCII (to avoid confusion with binary output).</td>
</tr>
<tr>
<td>ERRM</td>
<td>Error Tag (used for Caller ID and other uses). Refer to the +VCID command.</td>
</tr>
<tr>
<td>DRON</td>
<td>Distinctive Ring Cadence On time</td>
</tr>
<tr>
<td>DROF</td>
<td>Distinctive Ring Cadence Off time</td>
</tr>
<tr>
<td>CPON</td>
<td>Control Tone Cadence On time</td>
</tr>
<tr>
<td>CPOF</td>
<td>Control Tone Cadence Off time</td>
</tr>
<tr>
<td>CWON</td>
<td>Call Waiting Cadence On time</td>
</tr>
<tr>
<td>CWOF</td>
<td>Call Waiting Cadence Off time</td>
</tr>
<tr>
<td>ASTB</td>
<td>See Voice Mode Shielded Codes</td>
</tr>
<tr>
<td>SITT</td>
<td>The data value for the SITT tag, in the format <SITT>=<data><cr>, where <data> can mean: ICNT Intercept Tone VCCT Vacant Code Tone REOT Reorder Tone NCDT No Circuit Detected Tone TON4 Fourth SIT Tone Number TON5 Fifth SIT Tone Number TON6 Sixth SIT Tone Number TON7 Seventh SIT Tone Number</td>
</tr>
</tbody>
</table>

In the event of an unrecognized data tag, the SocketModem presents the data item information as printable hex ASCII numbers following the MESG tag. For example:

RING
DATE=0321
TIME=1405
NMBR=5045551234
NAME=DOE JOE
MESG=060342424231
RING
RING
Voice Mode Shielded Codes

These codes can be sent in either Command mode or Data mode. The DCE may return the event detection reports after the OK result code from the `+FCLASS` command. One or more simple event detection reports may be embedded within the data portion of a complex event detection report. Table 3 describes voice mode shielded codes. The number in the first column is the ASCII equivalent (in hex).

<table>
<thead>
<tr>
<th>Shielded Code</th>
<th>Hex</th>
<th>Event Report Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><DLE></td>
<td>(10)</td>
<td>Two contiguous <DLE><DLE> codes indicate a single <DLE> in the data stream.</td>
</tr>
<tr>
<td><SUB></td>
<td>(1A)</td>
<td><DLE><DLE> in the data stream.</td>
</tr>
<tr>
<td><ETX></td>
<td>(3)</td>
<td>End Data State; signifies the end of voice data. Can end with Event 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Presumed Hang Up Timeout), Event 10 (Presumed End of Message), Event 13 (Loop Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruption), Event 14 (Loop Current Polarity Reversal), Event 19 (BUSY), or Event 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DIALTONE).</td>
</tr>
<tr>
<td>Q</td>
<td>(51)</td>
<td>Data stream shielded Xon character. Used in the <code>+VXT</code> command to shield XON characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in the full-duplex data stream and in the Packet Protocol.</td>
</tr>
<tr>
<td>S</td>
<td>(53)</td>
<td>Data stream shielded Xoff character. Used in the <code>+VXT</code> command to shield XOFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>characters in the full-duplex data stream and in the Packet Protocol.</td>
</tr>
<tr>
<td>M</td>
<td>(4D)</td>
<td>Data stream shielded SOH code used for the Packet Protocol.</td>
</tr>
<tr>
<td>W</td>
<td>(57)</td>
<td>Data stream shielded ETB code used for the Packet Protocol.</td>
</tr>
<tr>
<td>U</td>
<td>(55)</td>
<td>Data stream shielded NAK code used for the Packet Protocol.</td>
</tr>
<tr>
<td>G</td>
<td>(47)</td>
<td>Data stream shielded ENQ code used for the Packet Protocol.</td>
</tr>
<tr>
<td>T</td>
<td>(54)</td>
<td>Timing Mark.</td>
</tr>
<tr>
<td>X</td>
<td>(58)</td>
<td>Packet Header for the "Complex Event Detection Report" (additional event data transfers to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the DTE).</td>
</tr>
<tr>
<td>.</td>
<td>(2E)</td>
<td>Packet Terminator for the "Complex Event Detection Report" (additional event data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transfers to the DTE).</td>
</tr>
<tr>
<td>/</td>
<td>(2F)</td>
<td>Start of DTMF tone shielding.</td>
</tr>
<tr>
<td>~</td>
<td>(7F)</td>
<td>DTMF transitions to off.</td>
</tr>
<tr>
<td>R</td>
<td>(52)</td>
<td>Event Number 3 (RING). The <DLE> shielded version of the RING result code.</td>
</tr>
<tr>
<td>1</td>
<td>(31)</td>
<td>Event Number 4 (DTMF 1).</td>
</tr>
<tr>
<td>2</td>
<td>(32)</td>
<td>Event Number 4 (DTMF 2).</td>
</tr>
<tr>
<td>3</td>
<td>(33)</td>
<td>Event Number 4 (DTMF 3).</td>
</tr>
<tr>
<td>4</td>
<td>(34)</td>
<td>Event Number 4 (DTMF 4).</td>
</tr>
<tr>
<td>5</td>
<td>(35)</td>
<td>Event Number 4 (DTMF 5).</td>
</tr>
<tr>
<td>6</td>
<td>(36)</td>
<td>Event Number 4 (DTMF 6).</td>
</tr>
<tr>
<td>7</td>
<td>(37)</td>
<td>Event Number 4 (DTMF 7).</td>
</tr>
<tr>
<td>8</td>
<td>(38)</td>
<td>Event Number 4 (DTMF 8).</td>
</tr>
<tr>
<td>9</td>
<td>(39)</td>
<td>Event Number 4 (DTMF 9).</td>
</tr>
<tr>
<td>0</td>
<td>(30)</td>
<td>Event Number 4 (DTMF 0).</td>
</tr>
<tr>
<td>A</td>
<td>(41)</td>
<td>Event Number 4 (Extended Keypad DTMF A).</td>
</tr>
<tr>
<td>B</td>
<td>(42)</td>
<td>Event Number 4 (Extended Keypad DTMF B).</td>
</tr>
<tr>
<td>C</td>
<td>(43)</td>
<td>Event Number 4 (Extended Keypad DTMF C).</td>
</tr>
<tr>
<td>D</td>
<td>(44)</td>
<td>Event Number 4 (Extended Keypad DTMF D).</td>
</tr>
<tr>
<td>*</td>
<td>(2A)</td>
<td>Event Number 4 (Extended Keypad DTMF E).</td>
</tr>
<tr>
<td>#</td>
<td>(23)</td>
<td>Event Number 4 (Extended Keypad DTMF E).</td>
</tr>
<tr>
<td>o</td>
<td>(6F)</td>
<td>Event Number 5 (Receive Buffer Overrun).</td>
</tr>
<tr>
<td>c</td>
<td>(63)</td>
<td>Event Number 6 (Facsimile Calling).</td>
</tr>
<tr>
<td>e</td>
<td>(65)</td>
<td>Event Number 7 (Data Calling).</td>
</tr>
<tr>
<td>h</td>
<td>(68)</td>
<td>Event Number 8 (line current break). Local phone goes on hook.</td>
</tr>
<tr>
<td>H</td>
<td>(48)</td>
<td>Event Number 8 (line current detected). Local phone goes off hook.</td>
</tr>
<tr>
<td>s</td>
<td>(73)</td>
<td>Event Number 9 (Presumed Hang Up "SILENCE" Timeout).</td>
</tr>
<tr>
<td>q</td>
<td>(71)</td>
<td>Event Number 10 (Presumed End of Message "QUIET" Timeout).</td>
</tr>
<tr>
<td>J</td>
<td>(4A)</td>
<td>Event Number 11 (SIT Tone).</td>
</tr>
</tbody>
</table>
Chapter 4 – Voice Commands

$ (24) Event Number 12 (Bong Tone).
I (6C) Event Number 13 (Loop Current Interruption). Usually indicates a remote hang up.
L (4C) Event Number 14 (Loop Current Polarity Reversal). May indicate a hang up or a receive, depending on CO implementation.
w (77) Event Number 15 (Call Waiting/Beep Interrupt).
t (74) Event Number 17 (TDD Detected - 1400/1800).
r (72) Event Number 18 (Ring Back).
b (62) Event Number 19 (BUSY). May be repeatedly sent.
d (64) Event Number 20 (DIALTONE). May be repeatedly sent.
K (4B) Event Number 21 (Reorder/Fast Busy).
F (46) Event Number 22 (V.21 Channel 2 7E flags).
u (75) Event Number 23 (Transmit Buffer Under run).
p (70) Event Number 24 (Line voltage increase - extension phone goes on hook).
P (50) Event Number 24 (Line voltage increase - extension phone goes off hook).
a (61) Event Number 25 (Facsimile or Data Answer).
f (66) Event Number 26 (Data Answer).
V (56) Event Number 27 (Voice Detection). A high confidence of voice.
v (76) Event Number 27 (Voice Detection). A low confidence of voice.
i (69) Event Number 29 (Stuttered Dial tone).
E (45) Event Number 30 (Invalid Voice Data Format. Voice data is incompatible with selected Voice Compression Methods.
Y (59) Event Number 31 (Lost Data Detected Event).
m (6d) Event Number 32 (Facsimile Answer).
% (25) Event Number 63 (manufacturer specific).
& (26) Event Number 48 (manufacturer specific).
' (27) Event Number 49 (manufacturer specific).
((28) Event Number 50 (manufacturer specific).
) (29) Event Number 51 (manufacturer specific).
all other 7-bit ASCII Reserved for future use.
DTE/DCE Interface Rates

The table below indicates the anticipated modem-to-computer interface rates for both the 7.2 bits-per-sample rate and the 8 bits-per-sample rate.

<table>
<thead>
<tr>
<th>Bits per Sample</th>
<th>Projected DTE/DCE I/F Rate @ 7.2K Hz</th>
<th>Projected DTE/DCE I/F Rate @ 8K Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4800</td>
<td>9600</td>
</tr>
<tr>
<td>1</td>
<td>9600</td>
<td>19200</td>
</tr>
<tr>
<td>2</td>
<td>19200</td>
<td>19200</td>
</tr>
<tr>
<td>3</td>
<td>38400</td>
<td>38400</td>
</tr>
<tr>
<td>4</td>
<td>38400</td>
<td>57600</td>
</tr>
<tr>
<td>5</td>
<td>57600</td>
<td>57600</td>
</tr>
<tr>
<td>6</td>
<td>57600</td>
<td>115200</td>
</tr>
<tr>
<td>7</td>
<td>115200</td>
<td>115200</td>
</tr>
<tr>
<td>8</td>
<td>115200</td>
<td>115200</td>
</tr>
<tr>
<td>9</td>
<td>115200</td>
<td>115200</td>
</tr>
<tr>
<td>10</td>
<td>115200</td>
<td>115200</td>
</tr>
<tr>
<td>11</td>
<td>115200</td>
<td>115200</td>
</tr>
<tr>
<td>12</td>
<td>115200</td>
<td>Fast</td>
</tr>
<tr>
<td>13</td>
<td>Fast</td>
<td>Fast</td>
</tr>
</tbody>
</table>
Chapter 5 – Country/Regional Code Configuration

Different countries/regions have different requirements for how modems must function. Therefore, before you use the modem, you must configure it to match the defaults of the country/region in which you are using it.

To configure the modem for a specific country/region, execute the following AT commands:

1. Type `AT%T19,0,nn` (*nn* stands for the country/region code). Press Enter. OK is displayed.
2. Then save the changes by issuing the following command: `AT&F&W`
3. To verify that the correct code has been configured, issue the following command:

 ATI9

 The country/region code is then displayed in decimal format.

The following is an example of country/region, AT commands, and result codes.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>AT Command (Hexadecimal)</th>
<th>Result Code (Decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro/NAM*</td>
<td>AT%T19,0,34 (default)</td>
<td>52</td>
</tr>
<tr>
<td>Australia</td>
<td>AT%T19,0,01</td>
<td>1</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>AT%T19,0,25</td>
<td>37</td>
</tr>
<tr>
<td>Japan</td>
<td>AT%T19,0,10</td>
<td>16</td>
</tr>
<tr>
<td>New Zealand</td>
<td>AT%T19,0,9</td>
<td>9</td>
</tr>
</tbody>
</table>

Countries/Regions Supported

See the list on the Multi-Tech Web site for countries and regions supported.

http://www.multitech.com/PRODUCTS/Info/approvals/

Then click on global modems. The Global Modem Country/Region Approvals page displays. On this page you can view approvals, configuration strings (includes the country/regional code) and responses available in list form by selecting country/region and/or product.
Index

#

#CBA – Callback Attempts ... 36
#CBD – Callback Delay .. 36
#CBF – Callback Failed Attempts Display 36
#CBFR – Callback Failed Attempts Reset 36
#CBI – Local Callback Inactivity 36
#CBN – Store Callback Password 36
#CBP – Callback Parity .. 37
#CBR – Callback Security Reset 37
#CBS – Callback Enable/Disable 37
#P – Set 11-Bit Parity ... 34
#S – Enter Setup Password .. 34
#Ss – Store Setup Password ... 34

$

$D – DTR Dialing .. 32
$EB – Asynchronous Word Length 32
$FC – Quick Connect ... 32
$LB – Long Break .. 32
$LL – Implements V 34 Handshake 32
$MB – Online BPS Speed ... 33
$RP – Ring Priority vs. AT Command Priority 33
$SB – Serial Port Baud Rate .. 33

%

%&%ATMTSMODEM – Remote Configuration
&Escape Sequence ... 35
%A – Adaptive Answer Result Code 20
%B – View Numbers in Blacklist 20
%C – Data Compression Control 21
%DC – AT Command Control ... 21
%DT – Set AT Command Mode Timer 21
%E – Fallback and Fall Forward 21
%H – Set Callback Security – Direct Connect Enable 21
%S – Command Speed Response 21

&

&C – Data Carrier (DCD) Control 14
&D – DTR Control .. 14
&E – XON/XOFF Pacing Control 14
&F – Load Factory Settings .. 14
&G – V.22bis Guard Tone Control 15
&K – Flow Control Selection .. 15
&L – Leased Line Operation .. 15
&P – Pulse Dial Make-to-Break Ratio 15
&Q – Asynchronous Communications Mode 16
&S – Data Set Ready (DSR) ... 16
&T – Self Test .. 16
&V – View Active Configuration 16
&W – Store Current Configuration 17
&Z – Store Dialing Location and Number 17
&Zy= – Store Dialing Location and Number for Callback Security 17

+

+++AT – Escape Sequence ... 7
+%B – V.8 and V.8bis Operation Controls 22
+%DCS – Select V.42bis or V.44 Data Compression 23
+%DR – V.44 Data Compression Reporting 24
+%DS – V.42bis Data Compression 24
+%DS44 – V.44 Data Compression 25
+%EB – Break Handling in Error Control 26
+%EFCS – 32-bit Frame Check Sequence 26
+%ER – Error Control Report .. 26
+%ES – Error Control Selection 27
+%ETBM – Call Termination Buffer Management 27
+FCLASS – Fax Class Indication 28
+GCAP – Complete List of Capabilities Request 28
+GCI= – Country of Installation 28
+GMI – Manufacturer Identification Request 28
+GMM – Model Identification Request 28
+GMR – Revision Request ... 29
+IFC – DTE-DCE Local Flow Control 29
+ILRR – DTE-DCE Local Rate Reporting 29
+IPR – Fixed DTE Rate .. 29
+MR – Modulation Reporting Control 30
+MS – Modulation Selection ... 30
+VCLASS – Call ID Selection ... 35
+VDR – Distinctive Ring (Ring Cadence Reporting) 53
+VRDR – Distinctive Ring Report 34
+VEM – Event Reporting and Masking 54
+VGR – Voice Gain for Received Voice Samples 47
+VGT – Set Volume for Transmitted Voice Samples 47
+VIP – Initialize Voice Parameters 45
+VIT – Set DTE/DCE Inactivity Timer 48
+VLS – Select Analog Source/Destination 49
+VNH – Automatic Hang-up Control 45
+VPP – Enable/Disable Voice Mode Packet Protocol 55
+VPR – DTE/DCE Interface Rate (Turn Off Autobaud) 55
+VRA – Ringback Goes Away Timer 50
+VRN – Ringback Timer .. 50
+VRX – Enter Voice Receive State 45
+VSD – Set Silence Detection Sensitivity 51
+VSM – Voice Compression Method 52
+VTD – Beep Tone Duration Timer (DTMF/Tone Generation Duration) ... 53
+VTS – Send Voice Tones .. 46
+VTX – Start Voice Transmission Process 47

1

10-Bit Mode .. 32
11-Bit Mode .. 32

3

32-bit Frame Check Sequence – +EFCS 26

A

A – Answer ... 7
Set the Volume for Transmitted Voice Samples – +VGT………………..47
Silence Detection Sensitivity – +VSD...........................51
sleep mode – S89...40
Speed
Maximum – S37...39
Sr – Set Register Value....................................12
S-registers
S2 – Escape Sequence38
S-Registers ..38
S0 – Sets Number of Rings...................................38
S1 – Counts Rings..38
S10 – Carrier Loss Disconnect Time......................38
S11 – Dialing Tones...38
S24 – Set Sleep Mode...38
S28 – V.34 Modulation..38
S3 – Carriage Return...38
S30 – Inactivity Timer..38
S35 – V.25 Calling Tone..38
S36 – Error Control...39
S37 – Maximum Speed...39
S38 – Downstream Data Rate..................................39
S4 – Line Feed Character.......................................38
S43 – Testing and Debugging..................................39
S48 – Error Control...40
S5 – Backspace Character.......................................38
S6 – Wait Time for Dial Tone.................................38
S7 – Abort Timer..38
S8 – Pause Length..38
S89 – Standby..40
S9 – Remote Configuration Escape Character38
Standby mode delay time – S89........................40
Start Voice Transmission Process – +VTX47
Store Callback Password – #CBN........................36
Store Current Configuration – &W........................17
Store Dialing Location and Number – &Z..............17
Store Dialing Location and Number for Callback Security – &Zy=17
Store Setup Password – #S=..................................34
T
T – Inactivity Timer...19
T – Select Tone Dialing..12
Testing and Debugging – S43..............................39
Transmit Break – \B...18
U
Unsolicited Voice Mode Result Codes.................57
V
V – Protocol Result Code..19
V – Result Code Format......................................12
V.22bis Guard Tone Control – &G......................15
V.25 calling tone – S35..................................38
V.34 modulation – S28..38
V.42 Error Correction...19
V.42bis Data Compression – +DS..........................24
V.44 Data Compression – +DS44..........................25
V.44 Data Compression Reporting – +DR...............24
V.8 and V.8bis Operation Controls – +A8E...........22
View Active Configuration – &V..........................16
View Numbers in Blacklist – %B..........................20
Voice Gain for Received Voice Samples – +VGR......47
Voice Mode Result Codes....................................56
Voice Mode Shielded Codes.................................58

Multi-Tech Systems, Inc. AT Commands for the MultiModem & SocketModem MT9234 Series (S000434H)
Index

W
W – Result Code Options ..12
Wait time for dial tone – S638

X
X – Select Result Code & Call Monitor Progress13
X – XON/XOFF Pass-Through20

Z
Z – Reset and Recall Stored Profile13

XON/XOFF Pacing Control – &E.............................14
XON/XOFF Pass-Through – \X20